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Preface 

Interaction between Compilers and 
Computer Architectures 

Effective compilers will allow more efficient execution of application 
programs on given computer architectures. On the other hand, well­
conceived architectural features can support more effective compiler op­
timization techniques. Good trade-off considerations between compilers 
and computer architectures are key to the success of designing highly effi­
cient and effective computer systems. From embedded micro-controllers 
to large-scale multiprocessor systems, it is important to understand the 
interaction between compilers and computer architectures. 

The Annual Workshop on Interaction between Compilers and Computer 
Architectures (INTERACT) has been organized to promote new ideas 
and to present recent developments in compiler techniques and com­
puter architectures that enhance each other's capabilities and perfor­
mance. This book presents revisions of seven papers presented at the 
Fifth Workshop on Interaction between Compilers and Computer Archi­
tectures (INTERACT-5), which was held in conjunction with the IEEE 
HPCA-7 at Monterrey, Mexico on January 20, 2001. 

The first paper is "EquiMax: A New Formulation of Optimal Register­
Sensitive Scheduling with Resources Constraints," by Sid-Ahmed-Ali 
Touati. It tackles a scheduling problem under registers and resources 
constraints in a wide-issue processor such as VLIW or superscalar. The 
scheduling problem is solved via an integer linear programming model 
with a better asymptotic algorithm complexity. 

The paper with the title of "An Efficient Semi-Hierarchical Array Lay­
out" by N. P. Drakenberg, F. Lundervall, and B. Lisper proposes a 
novel layout scheme for arrays, deviating from many typical linear lay­
out schemes. The proposed layout scheme, a semi-hierarchical scheme, 
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is claimed to provide improved TLB and cache behavior. 

The third paper is "Im pact of Tile-Size Selection for Skewed Tiling" 
by Yong-Hong Song and Zhiyuan Li, which attempts to improve array 
accesses in relaxation codes. To improve data locality in a nested loop, 
"tiling" is often applied at compile time with "loop skewing." This paper 
discusses a proper tile size for such a skewed tiling with a consideration 
of dynamic count of memory load instructions. 

The fourth paper is "Improving Software Pipelining by Hiding Memory 
Latency with Combined Loads and Prefetches" by M. Bedy, S. Carr, S. 
Onder, and P. Sweeny. This paper presents a scheme of combining a 
load and a prefetch to avoid potential drawbacks of non-blocking loads 
and explicit software prefetching when they are utilized separately. The 
paper shows how the compiler and architecture support to combine a 
load and a prefetch into one instruction, called a prefetching load, can 
give a lower register pressure as in software prefetching, and at the same 
time lower load/store-unit requirements as in non-blocking loads. The 
scheme also is shown to reduce register pressure significantly. 

The paper with the title of " Register Allocation for Embedded System 
in the Presence of Java Exception" by H.-B. Lee, B.-S. Yang, and S.-M. 
Moon presents a compromised local variable mapping to reduce memory 
requirement for just-in-time compilation of Java programs in embedded 
systems with limited memory. The scheme introduced in the paper al­
locates a local variable in a "try" block to a fixed location so that a 
simple implementation with a small overhead can be achieved. This pa­
per demonstrates through experiments with SPECjvm98 on ARM mi­
croprocessor that the proposed scheme works with little performance 
degradation, compared to other more flexible, but memory consuming, 
mappings. 

With VLSI technology progressing toward a more aggressive clock fre­
quency scaling, power consumption and wire-delay over logic delay are 
becoming very important issues in microprocessor architecture and de­
sign. The last two papers in this book address the technology issues. 

The paper with the title of " Is Compiling for Performance == Compil­
ing for Power?" by M. Valluri and L. John evaluates how the existing 
compiler optimizations influence energy consumption and power dissi­
pation of a superscalar processor. Their findings show that optimization 
techniques that improve performance by increasing the overlap in the 
program during execution can increase the average power dissipation, 
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while optimizations that improve performance by reducing the number 
of instructions can be used for energy optimization. 

The last paper, "A Technology Scalable Architecture for Fast Clock and 
High ILP" by K. Sankaralingam, R. Nagarajan, D. Burger, and S. Keck­
ler presents a new technology-aware architecture called Grid processor. 
The Grid processor is designed with the consideration of the technology 
constraints on wire and pipelining limits, and is consisted of a two­
dimensional grid of ALUs. The compiler is used to detect parallelism 
and to map instructions to the grid of ALUs. The paper claims that 
the Grid processor may offer the best of both the VLIW and dynamic 
superscalar architectures. 

The INTERACT Workshop has entered its fifth year. In the past five 
years, many people have helped to make INTERACT a success. We 
would like to thank all of them. For this year, the INTERACT-5 pro­
gram committee members are: 
Todd Austin, University of Michigan; Rastislav Bodik, University of 
Wisconsin; Doug Burger, University of Texas-Austin; Antonio Gonza­
lez, Universitat Politecnica de Catalunya, Spain; Wei Hsu, University of 
Minnesota; David Kaeli, Northeastern University; Bill Mangione-Smith, 
University of California at Los Angeles; and Eric Rotenberg, North Car­
olina State University. 

As can be seen from the papers included in this book, understanding 
the interaction between compilers and computer architectures is a very 
important aspect of the computer design. We hope that researchers and 
practitioners of computer architectures and compilers would find this 
book worthy of reading, and continue to contribute to the INTERACT 
Workshop in the coming years. 

Gyungho Lee 
Iowa State University 

Ames, IA 50011 

ghleeCliastate.edu 

Pen-Chung Yew 
University of Minnesota 

Minneapolis, MN 55455 

yewClcs.umn.edu 
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Chapter 1 

EQUIMAX: A NEW FORMULATION OF 
OPTIMAL REGISTER-SENSITIVE 
SCHEDULING FOR ILP PROCESSORS 

Sid-Ahmed-Ali Touati 
INRIA. Domaine de Voluceau, BP 105. 78153 Le Chesnay cedex, France. 

Sid-Ahmed-Ali.Touati@inria.fr 

Abstract In this article, we give a new formulation of acyclic scheduling prob­
lem under registers and resources constraints in multiple instructions 
issuing processors (VLIW and superscalar). Given a direct acyclic data 
dependence graph G = (V, E), the complexity of our integer linear pro­
gramming model is bounded by O(1V12) variables and O(IEI + 1V12) 
constraints according to a target architecture description. This com­
plexity is better than the complexity of the existing techniques which 
includes a worst total schedule time factor. 

Keywords: optimal scheduling, resources constraints, registers constraints, integer 
programming 

1. Introduction 

To sustain the increases in processor performance, current compilers 
try to take benefit from the instruction level parallelism (ILP) present 
in current generation processors. Multiple operations are issued in the 
same clock cycle to increase the throughput of the executed operations 
per cycle. Completing a computation as soon as possible is a schedul­
ing problem constrained by many factors. The most important ones 
are the data dependencies, the availability of the hardware features and 
the registers. The data dependencies define the code semantic and the 
intrinsic available ILP in the code. The resources constraints limit the 
number of instructions issued during the same clock cycle because of 
the lack of free functional units (FU). Also, architectural characteristics 
of current processors reveal heterogeneous and complex pipelined FUs 
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where an operation can use a group of FUs in different clock cycles dur­
ing its presence in the pipeline. Finally, since accessing a register has 
a null latency, we need to keep as many values in the registers as possible. 

Unfortunately, theoretical studies on scheduling reveal that integrat­
ing resources constraints [3] or registers constraints [5] are two NP­
complete problems. The problem of scheduling under both registers 
and resources constraints becomes a very complex task. General com­
pilers use many heuristics to get an optimized sched ule in polynomial 
time complexity. However, embedded applications or real time systems 
may need optimal (best) schedule. For this purpose, we need a "good" 
formulation for the problem. A lot of works have been done using inte­
ger linear programming (intLP) models. In our work, we present a new 
formulation of acyclic scheduling such that the complexity of the model 
generated is lower than the current ones, like we will explain in the end 
of this article. Our formulation must reduce the resolution time since 
we considerably reduce the number of variables and constraints in the 
generated intLP model. 

This article is organized as follows. We first present the model of 
the targeted processors in Section 2 and the acyclic data dependence 
graph (DDG) to be scheduled in Section 3: in our study, we assume 
heterogeneous FUs, more than one register type, and delayed laten­
cies of writing into and reading from registers. The problem of acyclic 
scheduling is briefly recalled in Section 4. After, we define some intLP 
modeling techniques in Section 5 to show how we linearize some logical 
operators (disjunction and equivalence) and how we compute the max­
imum of a set of integers. We then use these techniques to write our 
EquiMax (Equivalence-Maximum) intLP formulation in Section 6. We 
present some achieved work in this field in Section 7 and conclude by 
our remarks and perspectives in Section 8. 

2. Machine Description 

An ILP processor [15] takes benefit from the inherent parallelism 
in the instructions flow and issues multiple operations per clock cycle 
thanks to the pipelined execution and the presence of multiple func­
tional units (FUs). An operation can be executed on one or more func­
tional units (FU). We model the complex behavior of the execution of 
the operations on FUs by the reservation tables [16]. We attach to each 
instruction a reservation table (RT) to describe at which clock cycle a 
FU is busy due to the execution of this instruction on it. A RT consists 
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FUs 

time 
issue ALU MEM FP FPdiv issue ALU MEM FP FPdiv 

0 1 1 0 1 1 

1 1 1 1 

2 1 2 

3 3 

(a) RT/load (b) RT,add 

Figure 1.1. Reservation Tables 

of a two-dimensional table, where the number of lines is the latency of 
the operation, and the columns consists of the set of FUs. Given a RT 
of an instruction u, RTu(c, q) = 1 means that u executes on the FU q 
during the clock cycle c after its issuing. The number of columns in RT 
is bounded by the set of FUs, and the number of lines is bounded by the 
depth of the pipeline. 

The target machine M is described by the set of its hardware re­
sources, its registers types, and the set of operations which execute on 
these resources: 

1 the set of the registers types in the target architecture is T. For 
instance, the target architecture of the code in Fig. 1.2 has T = 
{int, float}; 

2 the resources of the machine are represented by the couple (Q, NO) : 

• Q = {ql, ... , qM} is the set of the different FUs ; 

• NQ = [NqJ , ••• , NqM ] where N q is the number of copies of q. 

3 the set of instructions is represented by a couple (IS, R7) : 

• IS = {u} is the instructions set which can be executed on 
M; 

• R7 = [RTuJ , RTu2 , ... ] such that RTu designates the RT 
of the instruction u. 

In some architectures (superscalar), the processor cannot issue more 
than m operations even if the number of FUs is greater than m. To 
handle this case, we consider a virtual "issue' FU' with m copies, such 
that all instructions use it once at the issue cycle. Figure. 1.1 gives two 
exam pies of RTs. 
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3. DAG Model 

A DAG G = (V, E, 8) consists of a set of operations V, a set of arcs 
E, and a delay function 8 such that 8(e) is the latency of the arc e. The 
arcs set E contains the data dependencies and any other precedence 
constraints. Each operation u has a latency lat( u). We assume one 
global sink operation .1. in G which reflects the total schedule time: if 
there is more than one sink node, we add the virtual node .1. with an 
arc e from each sink s to.1. with8(e) = lat(s). A valid schedule of G is a 
positive integer function a which associates to each operation u an issue 
time a(u). Any acyclic schedule a of G must ensure that: 

"ie = (u, v) E E: a(v) - a(u) ~ 8(e) 

The total schedule time of G is noted (f = a(.1.). 
In this article, we consider that each operation u E V writes into at 

most one register of a type t E T. The operations that define multiple 
values with different types are accepted in our model iff they do not 
define more than one value of a certain type. For instance, operations 
that write into a floating point register and set a condition flag are taken 
into account in our model. We denotes by ut the value of 

type t defined by the operation u. 
We also consider the following sets: 

1 VR,t is the set of values of type t E T. In Fig. 1.2, VR,jloat = 
{a,b,c,d,g,j,h,j,k}; 

2 ER,t is the set of flow dependency arcs through a value of type 
t E T. For instance ER,int = {(g, i), (i, j)}. If there is some values 
not read in the DAG, or are still alive after leaving this DAG, these 
values have to be kept in registers. We consider then that there is a 
flow arc from these values to .1. (like the flow arc (k,.1.) E ER,jloat). 

Finally, we consider that reading from and writing into a register may 
be delayed from the beginning of the schedule time (VLIW case). We 
define the two delay functions 8r,t and 8w ,t such that: 

8w ,t: VR,t -+ N 
u t-+ 8w ,t(u)/ 0 ~ 8w ,t(u) < lat(u) 
the write cycle of ut into a register of type t is a(u) + 8w ,t(u) 

8r,t: V -+ N 
u t-+ 8r ,t(u)/ 0 ~ 8r ,t(u) ~ 8w ,t(u) < lat(u) 
the read cycle of ut from a register of type t is a(u) + 8r ,t(u) 
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(a) fload [it]. IRa 
(b) fload [i2]. I Rb 
(c) fload [i3]. IRe 
(d) fmult IRa. jRb• IRd 
(e) imultadd jRa. jRb• jRe. iRe 
(g) ftoint j Re. iRg 

(i) iadd iRg • 4. iRi 
(f) fmultadd jRb. iRi. IRe. IRf 
(h) fdiv IRd• iRe. jRh 
(j) fadd IRj. 1 • IRj 
(k) fsub IRk. 1 • jRk 

(1) code before scheduling and register allocation 

Figure 1.2. DAG model 

4. Scheduling Problem 

5 

(2) the DDG G 

Like explained above, a valid schedule a of G is first constrained by 
the inherent data dependency relations between operations or any other 
serial constraints. The target architecture characteristics impose other 
constraints which are the limited numbers of registers and resources. 

4.1. Registers Constraints 

Given a DAG G = (V, E, 8), a value ut E VR,t is alive at the first step 
after the writing of u t until its last reading (consumption). The set of 
consumers of a value ut E VR,t is the set of operations that read it: 

Cons(ut ) = {v/3e = (u,v) E ER,t} 

For instance, Cons(bIloat) = {d, e, J} and Cons(kIloat) = {.l} in Fig. 1.2. 
The last consumption of a value is called the killing date and noted; 

kill(ut) = max (a (v) + 8r,t(v)) 
vECons(ut ) 

We assume that a value written at a clock cycle c in a register is avail­
able one step later. That is to say, if operation u reads from a register 
at a clock cycle c while operation v is writing in it at the same clock 
cycle, u does not get v's result but gets the value that was previously 
stored in that register. Then, the lifetime interval LTut of the value ut is 
]a( u) + 8w ,t( u), kill (ut)]. Provided the lifetime intervals of all the values, 
the number of registers of type t needed to store all the defined values is 
the maximum number of values of type t that are simultaneously alive. 
We call this number the register need (requirement) and we note it: 

RNt(G) = max_lvsat(c)1 
O~C~(7 
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where vsat(c) = {ut E VR,t!C E LTut} is the set of values of type t alive 
at clock cycle c. 

To compute the register need of type t, we build the indirected inter­
ference graph H t = (VR,t, £), such that ut and vt are adjacent iff they are 
simultaneously alive. The register need RNt(G) is then the cardinality 
of the maximal clique (complete subgraph) of H t . 

Since the number R t of available registers of type t is limited in the 
target machine, we need to find a schedule which doesn't need more than 
R t registers for each register type t : 

'tItET 

If we cannot find such schedule, spill code has to be generated, i.e. we 
must store some values in memory rather than in registers. Spilling 
increases the total schedule time because it inserts new operations and 
the spilled data may cause cache misses. 

4.2. Resources Constraints 

Resources constraints are simply the fact that two operations must 
not execute simultaneously on the same FU, i.e. the total number of 
operations which execute on a FU q during a clock cycle c must not 
exceed the number of the FU copies N q • By using the reservation tables 
defined in Section 2, an operation u executes on a FU q during a clock 
cycle c iff RTu[c - O"(u), q] = 1. Formally, the resources constraints are 
written: 

VO :S c :S a, Vq E Q L RTu[c - O"(u), q] :S Nq 

uEV 

5. Integer Linear Programming Techniques 

An intLP problem [8] is to solve: 

{ maximize (or minimize) cx 
subject to Ax = b 

with c, x E Nn : x;:::: 0, and A is an (m X n) constraints matrix. This is 
the standard formulation. In fact, we can use any other linear constraints 
(:S, ;::::, <, >, =). 
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5.1. Writing Logical Operators with Linear 
Constraints 

7 

Intrinsically, an intLP problem defines the conjunctive operator A: 
given two constraints matrix A and A', saying that x must be a solution 
for both Ax 2 b and A' x 2 b' is modeled by : 

The negation --, represents a union of solutions spaces rather than 
an intersection: given a constraints matrix A with m lines (m linear 
constraints 11, h, ... ,1m), forcing x to do not verify Ax 2 b is modeled 
by: 

It (x) < b1 V h (x) < b2 V ... VIm (x) < bm 

In [8], the authors shown how to model the disjunctive operator V. Con­
sider the problem: 

{ maximize (or minimize) I(x) 
subject to : g(x) 2 0 V h(x) 2 0 

By introducing a binary variable a E {O, I}, this disjunction is equiv­
alent to: 

{ g(x) 2 ag 
h(x) 2 (1- a)R 

where fL and R are two known non null finite lower bounds for 9 and h 
resp. 

We can also generalize to arbitrary number of constraints in a dis­
junctive formula V n : 

Since the dichotomy operator V is associative, we group the constraints 
two by two using a binary tree. We can either express Vn by grouping 
the constraints using a perfect binary tree as shown in Fig. 1.3.(a), or 
using a left associative binary tree as shown in Fig. 1.3. (b). With both 
techniques, there is (n - 1) internal V operators [2] which need to define 
(n - 1) boolean variables (hi,··· ,hn-t). The final constraints system 
to express Vn has O(n) constraints (it,··· ,In) and O(n - 1) boolean 
binary variables (hi, ... ,hn- 1). The non null lower bounds of the linear 
functions are always finite. They always can be computed statically and 
propagated up in the binary tree [17]. 
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/V, 
V V 

tf '-

/V, 
V I ----------- V 

f,(x) ~ ::(~ 0 h(x) ~ ~(x) ~o--in--,~ ~x) ~ 0 

(a) Perfect Binary Tree 

V 
tf 

h(x) 2: 0 h(x) 2: 0 

V /, 
fn(x) 2: 0 

(b) Left Associative Binary Tree 

Figure 1.3. Expressing an n-Disjunction with Linear Constraints 
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From above, we can deduce the linear constraints of any other logical 
operator: 

1 g(x) ~ 0 ==} h(x) ~ 0 can be written g(x) < 0 V h(x) ~ 0 

2 g(x) ~ 0 {::::::} h(x) ~ 0 can be written 

(g(x) ~ O!\ h(x) ~ 0) V (h(x) < O!\ g(x) < 0) 

5.2. Computing the Maximum with Linear 
Constraints 

In our intLP formulation, we need to compute the function z = 
max(x, y) which can formulated by considering the following constraints: 

z>x 
z~y 

z :::; (1 - a) x + ay 
z :::; ay + (1 - a) x 
a E {O, 1} 

where (x, y) are two finite non null upper bounds for x, y resp. We can 
also express the maxn function with arbitrary number of parameters 
z = maxn(xl, X2,'" ,xn). Since max is associative, we use a binary tree 
like explained for the n-disjunction operator in Fig. 1.3. The number of 
internal nodes including the root is equal to n - 1, so we need to define 
n - 2 intermediate variables (that hold intermediate maximums) and 
(n - 1) systems to compute"max" operators. It leads to a complexity 
of O(n - 2) = O(n) intermediate variables and 0(4 X (n - 1)) = O(n) 
linear constraints (each "max" operator needs 4 linear constraints to 
be defined) and O(n - 1) = O(n) binary variables (each max operator 
needs 1 boolean). The non null upper bounds of the linear functions are 
always finite if the domain sets of the variables Xi is bounded [17]. 

6. EquiMax Integer Programming Formulation 

'In this section, we define a new formulation of scheduling problem 
using integer linear programming (intLP). We named it EquiMax be­
cause it uses the linear constraints which express the equivalence relation 
({::::::}) and the function maxn. 

6.1. Scheduling Variables and Objective 
Function 

For all operations u E V, we define the integer variable CTu that com­
putes the schedule time. The objective function of our model is to min­
imize the total schedule time i.e. minimize CT .L. 
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The first linear constraints describe the precedence relations, so we 
write in the model: 

Ve=(u,v)EE av - au ~ 8(e) 

There is O(WI) scheduling variables and O(IEI) linear constraints. To 
make the domain set of our variables bounded, we assume T as the worst 
possible schedule time. We chose T sufficiently large, where for instance 
T = ~UEV lat( u) is a suitable worst total schedule timel. Then, we 
write the following constraint: 

As consequence, we deduce for any u E V: 

• au ~ au = LonguestPathTo(u) is the "as soon as possible" sched­
ule time; 

• au ~ au = T-LonguestPathFrom(u) is the "as later as possible" 
schedule time according to the worst total schedule time T; 

6.2. Registers Constraints 

6.2.1 Interference Graph. The lifetime interval of a value ut 

of type t is 

We define for each value ut the variable kut that computes its killing 
date. The number of such defined variables is O(ITI x WR,tl). Since the 
domain of our variables is bounded, we know that kut is bounded by the 
two following finite schedule times: 

where 

• kut = au + 8w ,t(u) is the first possible definition date of ut ; 

• kut = maxvECons(ut) (av +8r,t(v)) is the latest possible killing date 
of ut . 

We use the maXn linear constraints to compute kut like explained in 
Section 5.2: we need to define for each kut O(ICons( ut ) I) variables and 

IThe case where no ILP is exploited. 
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0(4 X ICons(ut)l) linear constraints to compute it. The total complexity 
to define all killing dates for all registers types is bounded by 0(1V12) 
variables and 0(1V12) constraints. 

Now, we can consider H t the indirected interference graph of G for the 
register type t. For any couple of values of the same type ut , vt E VR,t, 
we define a binary variable s~,v E {O, I} such that it is set to 1 if the two 
values lifetimes intervals interfere: Vt E T, V couple ut , vt E VR,t 

For any registers type t E T, the number of variables s~ v is the number 

of combinations of 2 values among IVR,tl i.e. (IVR,tl X (I'VR,tl - 1)) /2. 
LTut nLTvt = <p means that one of the two lifetime intervals is "before" 

the other, i.e. LTut -< LTvt V LTvt -< LTut where -< denotes is the 
precedence operator "before" in the interval algebra [11]. Then, we have 
to express: 

s~,v = 1 <¢=::} -'(LTut -< LTvt V LTvt -< LTut) 

Since s~ v E {O, I}, these constraints are equivalent to: , 

st > 1 <¢=::} { kut - (Tv - Ow,t(v) - 1 2: 0 
u,V - k t - (T - 0 t(u) - 1 > 0 v u w, _ 

Given three logical expressions (P, Q, 5), (P <¢=::} (QI\S)) is equivalent to 
(P I\Q 1\5) V (-,P 1\ -,Q) V (-,P 1\ -,5). We write these two disjunctions with 
linear constraints by introducing two binary variables h, hi E {O, I} (see 
Section 5) and computing the finite non null lower bounds of the linear 
functions. This leads to write in the model: Vt E T, V couple ut , vt E 
VR,t 

s~,v + h + hi - 1 2: 0 
kut - (Tv - Ow,t(v) - min( -1, kut - (Tv - Ow,t(v) - 1) X (h + hi) - 1 2: 0 
kvt - (Tu - Ow,t(u) - min( -1, kvt - (Tu - Ow,t(u) - 1) X (h + hi) - 1 2: 0 

-s~,v - h + hi + 1 2: 0 
-ku + (Tv + ow(v) + min(-l, -kut + (Tv + Ow,t(v)) X (h - hi - 1) 2: 0 

_st - hi + 1 > 0 u,v _ 

-kvt + au + ow(u) + min( -1, -kvt + (Tu + Ow,t(u)) X (hi - 1) 2: 0 
h,h'E{O,l} -
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The complexity of computing all the s~,v variables is O(IVR,tl x (IVR,tl-
1)) binary variables (two booleans for each couple of values (ut,vt)) and 
0(7/2IVR,tl X (IVR,tl - 1)1) linear constraints (7 linear constraints for 
each couple of values). The total complexity of considering the inter­
ference graph Ht is then bounded by 0(IVR,tl2) variables and 0(IVR,tI2) 
constraints. 

6.2.2 Maximal Clique in the Interference Graph. The 
maximum number of values of type t simultaneously alive corresponds to 
a maximal clique in Ht = (VR,t, £t), where (ut , vt) E £t iff their lifetime 
intervals interfere (s~ v = 1). For simplicity, rather to to handle the 
interference graph its~lf, we prefer considering its complementary graph 
H: = (VR,t, £D where (ut, vt) E £: iff their lifetime intervals do not 
interfere (s~,v = 0). Then, the maximum number of values of type t 
simultaneously alive corresponds to a maximal independent set2 in H:. 

To write the constraints which describe the independent sets (IS), we 
define a binary variable Xut E {O, I} for each value Xut E VR,t such that 
Xut = 1 iff u t belongs to an IS of HI. We must express in the model the 
following linear constraints: 

Since s~ v E {O, I} and by using the linear expressions of the equivalence 
(<¢=:}), ~e introduce a boolean h E {O, I} (see Section 5). The IS are 
defined in the intLP model by considering: 

-Xut - Xvt + h + 1 ~ 0 
-s~,v + h ~ 0 
Xut + Xvt - 2h ~ 0 
s~,v - h ~ 0 
hE{O,l} 

The number of the variables Xut is O(IVR,tl). The number of introduced 
binary variables to express the equivalences is 0(1/2x IVR,tl X (IVR,tl-l)). 
The number of linear constraints to define the IS is 0(2 X IVR,tl X (IVR,tl-
1)). 

21t is a subgraph such that there is no two adjacent nodes. 
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The registers constraints are the fact that any set of values simulta­
neously alive of registers type t must not exceed the number of avail­
able registers R t . The maximal IS in H: is the maximal l.:utEV Xut. 

R,t 

Thereby, we write in the model; 

WET 

There is O(ITI) = 0(1) such constraints. The total complexity of com­
puting the maximal independent sets in H: (maximal cliques in H t ) is 
then bounded by 0(!VR,tI 2 ) variables and 0(!VR,tI 2 ) constraints. 

6.3. Resources Constraints 

6.3.1 Conflicting Graph. The resources constraints are han­
dled by considering for each FU an indirected graph Fq = (V, Eq) which 
represents conflicts between the instructions on a FU q E Q .For any 
cou pie of operations, (u, v) E Eq iff u and v are in conflicts on q. Any 
clique in Fq represents the set of operations that use q at the same clock 
cycle. So, any clique must not exceed Nq the number of the FU copies. 

We define a binary variable f~,v E {a, I} such that f~,v = 1 iff there is 
a conflict between u, von the FU q. For each FU, there is 0(1/2 X !VI X 

(!VI-I)) r binary variables. To compute them, we use the reservation 
tables explained in Section 2. Having the RT of two operations types 
u and v, we can deduce when a structural hazard occurs on a FU q. 
For example, the operations a and i described in Fig. 1.2 have the RT 
of Fig. 1.1. These two operations are in conflict on the ALU iff (Ja = 
(Ji V (Ja + 1 = (Ji. The general formulation of conflicting variables is the 
disjunction of all cases where a conflict on the FU occurs. 

Let Uu,q be the set of clock cycles in the reservation table of u where 
the FU q is used by u : 

Vu E V Vq E Q Uu,q = {c E N/RTu[c, q] = I} 

The set of all cases where two operations conflicts on a FU q are described 
by the cartesian product Uu,q 0 Uv,q' The general formula of the binary 
conflicting variables is then: 

Vq E Q V couple u,v f q = 1 ¢:=:? u,v v (J u + c1 = (J v + c2 
(c1,c2)E(Uu,q ® Uv,q) 

We use the linear constraints of equivalences and disjunctions defined in 
Section 5 to write the linear description of this formula in the model. 
The number of terms in this disjunction depends on IUu,q 0 Uv,ql which 
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is a function of the target architecture characteristics (reservation tables 
and instructions set), and thereby it is a constant for any input DAG. 
We can write the linear constraints of conflicting cases of all the couples 
of instructions in IS only once for the target architecture, and then 
instantiate them for any input DAG. The total complexity of computing 
the conflicting variables r is bounded by 0(1V12) variables and 0(1V12) 
constraints. 

6.3.2 Maximal Click in the Conflicting Graph. For sim­
plicity, rather than considering the conflict graph Fq itself, we use its 
complementary F~ = (V, [~) such that (u, v) E [~ iff u and v are not in 
conflicts on q (f2,v = 0). Then, a clique in Fq becomes an independent 
set in F~. 

We define a binary variable y~ E {O, I} for each operation u such that 
y~ = 1 iff u belongs to an IS of F~. We write in the intLP model the 
linear constraints of IS : 

'l/q E Q '1/ couple u, v E V Yq + yq < 1 {:::=} jq = 0 u v _ u,v 

Since f2,v E {O, I} and by using the linear constraints of the equivalence 
(Section 5), we introduce a binary variable h E {O, I}. These constraints 
become: 

- y~ - y~ + h + 1 ~ 0 
- f2,v + h ~ 0 
y~ + y~ - 2h ~ 0 
f2,v - h ~ 0 
hE{O,I} 

There is 0(1/2 x IVI x (lVI-I)) binary variables h for each FU (one for 
each couple of operations) and 0(2 X IVI x (IVI- 1)) linear constraints 
to describe the IS. The resources constraints are the fact the cardinality 
of the any independent set in F~ must not exceed N q • We write in the 
model: 

'l/q E Q 

There is O(IQI) = 0(1) such linear constraints. 

6.4. Summary 

Our integer LP model has a total complexity bounded by 0(1V12) 
variables and O(IEI + 1V12) constraints: 

1 the objective function: minimize a l.. 
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2 the total number of integer variables is bounded by 0(1V12) 

(a) O(IVI) scheduling variables: au for each node u E V; 
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(b) O((IVR,tl X (IVR,tl- 1))/2) interference binary variables for 
each registers type t: S;L,V E {a, I} for all couples ut, vt E VR,t ; 

(c) O(IVR,tl) binary independent sets variables for the comple­
mentary interference graph H: of the register type t: Xut E 
{a, I} for each value u t E VR,t ; 

(d) O((IVI x (IVI- 1))/2) conflict binary variables for each FU 
q: 
f~,v E {a, I} for all couples u, v E V; 

(e) O(IVI) binary independent sets variables for the complemen­
tary conflict graph F~ of each FU q: y~ E {a, I} for each 
operation u E V ; 

(f) the total number of intermediate and binary variables to write 
maxn , n-disjunctions and equivalence with linear constraints 
is bounded by 0(1V12) ; 

3 the total number of linear constraints is bounded by O(IEI + 1V12) 

(a) O(IEI) scheduling constraints: 

'tIe=(u,v)EE 

(b) the total number of interval lifetimes interference constraints 
is bounded O(IVR,tI2) for each register type t: 

'tit E 7 

(c) the total number of independent sets constraints for the com­
plementary interference graph HI is bounded by 0(IVR,tI2) 
for each register type t : 

'tit E 7 

(d) the number of registers constraints is 0(171) = 0(1) : 

'tit E 7 

(e) the total number of conflicting constraints IS bounded by 
0(1V12) for each FU q: 

'tIq E Q r = 1 ¢:::::? u,V v 
(c1,c2)EUu,q x Uv,q 
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(f) the total number of independent sets constraints for the com­
plementary conflict graph F~ is bounded by 0(1V12) : 

Vq E Q Yu + Yv :S 1 {::=} iu,v = 0 

(g) the number of resources constraints is O(IQI) = 0(1) : 

Vq E Q 

(h) the total number of linear constraints to express maxn , n­
disjunctions and equivalence is bounded by 0(1V12) ; 

We can optimize the length of our model by considering; 

• a precedence constraints e = (u, v) is redundant and can be evicted 
from the model iff lp(u, v) > o(e), where lp(u, v) denotes the 
longest path from u to v ; 

• two values (ut , vt) E VR,t can never be simultaneously alive iff 
for all the possible schedules one value is always defined after the 
killing date of the other. This is the case if any of the two following 
conditions is verified: 

"iv' E Cons(vt ) lp(v', u) 2: br(V') - bw(U) 
Vu' E Cons(ut ) lp(u', v) ~ or(u') - ow(v) 

such that if no path exists between two nodes, we consider it as 
-00; 

• two operations u, v E V can never conflict on a FU q iff they can 
never use q at the same clock cycle. This is the case if any of the 
two following conditions is verified: 

Vc E Uu,q Vc' E Uv,q 
Vc' E Uv,q Vc E Uu,q 

lp(u,v) > c- c' 
lp(v,u) > c'- c 

such that if no path exists between two nodes, we consider it as 
-00. 

7. Related Work 

Acyclic scheduling under registers and resources constraints is a classi­
cal problem where a lot of works have been done. An intLP formulation 
(SILP) was defined in [18] to compute an optimal schedule with register 
allocation under resources constraints. The complexity of this model 
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was bounded by O(1V12) variables and O(1V12) constraints. However, 
this formulation did not introduce the registers constraints, i.e. it did 
not limit the number of values simultaneously alive. Moreover, the re­
sources usage patterns which they used was simple and did not formalize 
the structural hazards that are present in most current ILP processors. 
A formulation, called OASIC, introduced the registers constraints and 
was given in [9, 10]. The number of variables was O(1V12) but the 
number of linear constraints grown exponentially due to the registers 
constraints. An extension of OASIC formulation was written in [13] to 
take into account the non regular registers sets (some registers must not 
be used by some operations) and some other special constraints on ILP 
which are specific to their target processor characteristics. The registers 
constraints was formulated but not integrated in the model because of 
the exponential number of constraints to be generated. 

A polynomial formulation for the registers constraints was defined 
in [5] with a complexity of O(T x IVI) variables and O(IEI + T xlVI) 
constraints. Similar approaches minimize the register requirement in ex­
act cyclic scheduling problem (software pipelining) under registers and 
resources constraints [1, 6, 4]. It is easy to rewrite these intLP models 
to solve the acyclic scheduling problem. Hanen wrote an original for­
mulation to linearize the disjunctive resources constraints in [12]. The 
drawback of her formulation was the fact that it treated only simple 
resources, i.e. an operation can execute only on a single FU. Feautrier 
in [7] extended this latter to take into account multiple copies of one FU. 
However, his formulation had the same drawback as [18] and did not 
treat complex and heterogeneous FUs. The optimal periodic scheduling 
problem under both registers and heterogeneous resources constraints 
was formulated in [1, 6, 4]. All these formulations had a complexity 
which depended on the worst total schedule time T. Indeed, they de­
fine a binary variable O"u,c for each operation u and for each execution 
step c during the whole execution interval [0, T]. O"u,c is set to 1 iff the 
operation u is scheduled at the clock cycle c. The complexity of their 
models was clearly bounded by O(Tx IV I) variables and O(IEI+Tx IVI) 
constraints. In fact, the factor T can be very large in real codes since it 
depends on the in pu t data itself (critical paths and specified operations 
latencies). We think that a complexity must depend only on the amount 

of input data and not on the date itself. Otherwise, the resolution time 
would not scale very well. For instance, if we are sure statically that 
the access to the memory performed by the operation a in Fig. 1.2 is a 
cache miss, then we would specify that its latency is a memory access 
('" 100) rather than a cache access in order to better exploit free slots 
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during scheduling. In this case, the number of variables and constraints 
in the intLP model is multiplied by a factor of hundred. 

The coefficients introduced by our formulation in the final constraints 
matrix are all bounded by T and -T, which is the case of the coeffi­
cients in the models defined in [1, 5, 6, 5]. If T is very huge, resolv­
ing an EquiMax model or any of the previous formulations may cause 
computational overflows: in fact, searching for an exact solution of an 
intLP model needs to compute some determinants of the constraints ma­
trix which can be very huge if the coefficients are sufficiently large [14]. 
Since EquiMax reduces the size of the constraints matrix, computing 
these determinants must be less critical with our formulation than with 
the previous techniques. 

8. Conclusion 

In this work, we give an intLP formulation of the optimal scheduling 
under resources and registers constraints. The FUs can have a complex 
usage pattern and are modeled by reservation tables. We handle the 
multiple registers types and the delays of the reading from and writing 
into the registers. The complexity of our model depends only on the 
number of operations to be scheduled and on the number of serial con­
straints. Theoretically, our formulation must reduce considerably the 
time of finding the exact solution. In the future, we will extend our 
formulation to cyclic scheduling (software pipelining), where the values 
lifetime intervals and the resources usage patterns become cyclic. 
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Abstract For high-level programming languages, linear array layout have de facto 
been the sole form of mapping array elements to memory, to see widesp­
read use. The increasingly deep and complex memory hierarchies present 
in current computer systems expose several deficiencies of linear array 
layouts. One such deficiency is that linear array layouts strongly favor 
locality in one index dimension of multidimensional arrays. Secondly, 
the exact mapping of array elements to cache locations depend on the 
array's size, which effectively renders linear array layouts non-analyzable 
with respect to cache behavior. We present and evaluate an alternative, 
semi-hierarchical, array layout which differs from linear array layouts 
by being neutral with respect to locality in different index dimensions 
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and by enabling accurate and precise analysis of cache behaviors at 
compile-time. 

1. Introduction 

Present state-of-the-art compilers do not consistently deliver the per­
formance reasonably expected by users. One of the most fundamental 
reasons for this is that existing high-level languages invariably induce a 
perception of memory as being fiat, whereas actual computer architec­
tures are being equipped with increasingly deep memory hierarchies to 
overcome the widening performance gap between processors and main 
memones. 

Devising locality enhanced algorithms, suitable for hierarchical algo­
rithms, is a creative process just as algorithm development in general, 
and it is therefore not reasonable to expect compilers to automatically 
derive such algorithms from their non locality-enhanced counterparts. 
Long-term success in the increasingly important problem of consistently 
obtaining high performance from hierarchical memories will most likely 
require performance models and languages where locality is somehow 
exposed. Ideally, this would enable a distinct division of responsibility 
between compilers and their users, where compilers perform all archi­
tecture specific tuning, and algorithmic aspects (including algorithmic 
locality) are managed by humans. For such a division of responsibili­
ties to be meaningful, both parties must be given the means to perform 
their designated tasks. For a compiler this means, among other things, 
that logical locality should be reliably translated into effective locality. 
Consider the following fragment of Fortran 90 code: 

function mmMpyAdd( A, B, C) 
real, dimension(:,:), intent(in) :: A, B 
real, dimension(:,:), intent(in,out) :: C 

integer L, M, N 
integer i, j, k 

M = size( C, 1 ) 
N = size( C, 2 ) 
L = size( A, 2 ) 
do i = 1, M 

do j = 1, N 
do k = 1, L 

C(i,j) = C(i,j) + A(i,k) • B(k,j) 
end do 

end do 
end do 

end function mmMpyAdd 

In common with most other programming languages, the arrays passed 
to mmMpyAdd as A, Band C are likely to have been dynamically al­
located with sizes depending on values input to the program, or being 
statically non-determinable for other reasons. Having said the above, 
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0 2 8 10 32 34 40 42 

r-

l- -

1 3 ~ 11 33 35 e. 43 

4 ~ 12 14 36 ~ 44 46 

II 5 7 13 15 37 39 45 47 - - - -
i' 16 18 24 26 48 50 56 58 

, 
'-

17 19~ 27 49 51 ~ 59 

20 ~ 28 30 52 ~ 60 62 

21 23 29 31 53 55 61 63 

Figure 2.1. The semi-hierarchical array layout (HAT) applied to a two-dimensional 
array, and using 8-by-8 top-level tiles. 

we henceforth assume that array sizes for the most part, cannot be de­
termined at compile time. When using linear array layouts both the 
direction and distance in the iteration space, between iterations which 
experience cache interference, depend on the sizes of the arrays involved, 
and for that very reason cannot be determined at compile time. 
We present an alternative, semi-hierarchical, array layout (called HAT) 
that is shown in Figure 2.1 above, and which addresses the issues raised 
further above by being effectively dimension-neutral with respect to ac­
cess distance in memory, and by mapping array elements to memory 
locations such that the possible cache-location of each element does not 
depend on the size of the corresponding array. 

Our presentation is structured as follows: First, the details of the non­
linear semi-hierarchical array layout are presented in Section 2 along with 
simulation statistics and measured performance results for a (very) small 
set of computational kernels. Section 3 we show that when using the 
HAT layout for programs with regular control flow and data references 
(i. e., nested loops with affine array index expressions), cache conflicts 
form repeating compact patterns which tessellate the iteration space, 
and whose exact contents is computable at compile-time. In Section 4 
we present related work. Finally,in Section 7, we discuss our results, 
draw conclusions, and suggest future work. 
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2. Array Layout 

Any implementation of a programming language which provides multi­
dimensional arrays, must also decide upon ways in which to map such 
multi-dimensional index-spaces to the linear address spaces used for 
memory. Such mappings of index spaces to address spaces may be for­
mally specified as layout functions L [3], which should be interpreted 
such that L applied to tuples of array indices (il' ... , i m ) yields the mem­
ory location of the corresponding array element relative to the starting 
memory location of the array. 

2.1. Linear Array Layouts 

The layout functions Llinear corresponding to linear array layouts 
may be expressed as 

m 

Llinear(i l , ... ,im ) = SE . L ckik, 
k=l 

(2.1) 

where SE denotes the size of array elements. The ubiquitous row major 
and column major orderings are both linear array layouts which sim­
ply correspond to different choices of Cl, ... , Cm . The most significant 
benefit of row major and column major layouts is due to their linearity 
(i.e., L(ai+,Bj) = aL(i)+,BL(j)), as it enables incremental computation 
of memory addresses for sequences of index tuples. For the very com­
mon case of index tuple sequences with a constant difference between 
successive elements, incremental computation of addresses can be made 
particularly efficient, and is indeed performed by all modern optimizing 
compilers. 

Sadly, the efficient address computations of linear array layouts are 
offset by their inclination to interact poorly with hierarchical memory 
systems when arrays are large. Linear layout functions inevitably map 
array elements which are adjacent along some direction of the index­
space to consecutive memory locations, whereas neighboring elements 
along remaining orthogonal directions tend to occupy widely separated 
memory locations. Separation of logically adjacent locations makes it 
unnecessarily difficult for compilers to transform logical locality into ef­
fective locality, and in combination with the different behavioral char­
acteristics of caches and TLBs [15] and the influence of array sizes on 
the mapping of array elements to cache-locations, the task becomes near 
impossible. 
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2.2. Hierarchical Array Layouts 

An m-dimensional array which is mapped to memory using a hier­
archical layout can be seen as being recursively constructed from 2m 

equally shaped subarrays. Different rules for the relative ordering of the 
constituent subarrays lead to globally distinct hierarchical array layouts, 
which are known by names such as (-order, U-order, Hilbert order and 
Z or Morton order [16] (an example of transposed Morton, or ZT-Iayout 
is provided by the right hand-side of Figure 2.1). Hierarchical array lay­
outs have been developed and used for various special purposes, such as 
in computational subroutine "libraries" [4, 3], load balancing of parallel 
computations [12, 17], and in image processing [8, 27]. 

Despite a non negligeable volume of results on hierarchical storage 
layouts, such results have typically not become widely known. Several 
authors seem to have reinvented such storage layouts plus associated 
concepts and results themselves [D.S. Wise, personal communication], 
only to subsequently find them scattered among an unusually wide as­
sortment of scientific publications [23, 16, 20]. Our motive for reinvent­
ing the Morton order was to enable accurate and precise compile-time 
analysis of cache behavior and to simplify simultaneous locality enhance­
ment with respect to complete memory hierarchies (e.g., both cache and 
TLB). 

A downside of pure hierarchical array layouts based on globally con­
stant subarray shapes, is that they potentially waste huge amounts of 
address-space for arrays whose shape deviates from the subarray defin­
ing its layout. 1 To avoid this we have chosen to combine a linear layout 
with a hierarchical layout, by using the hierarchical Morton order for 
subarrays up to one or several TLB pages in size, and let these subar­
rays in turn, be ordered according to the linear layout. The resulting 
semi-hierarchical array layout is called HAT (for "Hierarchical Array 
Tiling"). 

2.2.1 Address Arithmetic. The computation of addresses 
from indices does look like a potential source of inefficiency for hierar­
chical array layouts. Fortunately, for a Morton (and transposed Morton) 
ordering based on 2 X ... X 2 subarrays (as used for HAT), the addresses 
of array elements are computable from indices through simple bit op­
erations, leading to a definition of the layout function for transposed 

1 Wise has recently pointed out that only address space, not actual storage, is being wasted. 
His conclusion that such waste is harmless overall will, in our opinion, require more experi­
mental evidence than given in [25]. 
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a 

b 

I 

Figure 2.2. An V'2 operation, generating an 8-bit result. 

Morton order as: 

where V k is an operator2 such that r = (aVkb) is the interleaving of 
groups of k bits from b with single bits from a, as shown in Figure 2.2 
(next page) for k = 2. From (2.2) it is easily seen that the mapping 
of array elements to memory is independent of an array's size and that 
address computations may be performed through simple bit-operations, 
but current processor architectures rarely include V-operations in their 
instruction sets, nor are these operations easily synthesized as short se­
quences of common instructions, and as a consequence direct evaluation 
of LMorton will be rather expensive. Interestingly, this is not vastly 
different from linear layouts, for which the integer multiplications in 
Llinear makes its direct evaluation costly. Surprisingly, incremental up­
dating of addresses can be efficiently done also for arrays using Morton 
order as is demonstrated by the following example: 

Example 1 Consider the index tuple (3,5) of a two dimensional array of single 
precision floats, whence 

L Morton(3, 5) = 4.(3V' 1 5) = 4.(0000101 V' l OOOOOOl1) = 10011100 = 156, 

which may be decomposed into components corresponding to each index as: 

10011100 = 00010100 V 10001000, 

2The visual appearance of V is intended to suggest the interleaving of bits from two sources. 
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where V denotes the bitwise or of its two operands. Now, given the pair of values or:ed 
to form L Morton(3, 5), we may compute L Morton(3 + 3, 5) as follows: 

00010100 
+ 10101000 

10111100 
+ 00010100 

11010000 
II. 01010100 

01010000 V 10001000 
= 11011000 = 216. 

Formal justification of the operations just performed is provided by the 
algebra of dilated integers [23, 20, 25] (p. 53-55, p. 222-226, and p. 
779-781, respectively). For the convenience of our readers we now briefly 
summarize its most salient features from the references just cited. 

Definition 1 Let s be an integer whose binary representation is given 
by s = SrSr-l.' .SIS0, Si E {O, 1}, using two's complement representation 
for negative integers. The integer 

SVk = Sr 0 .. ·0 Sr-l O· . ·0 ... SI 0 .. ·0 So 
~ ~ ~ 

k bits k bits k bits 

is called a k-dilated version of s, or simply a dilated version of s for 
k = 1. 

Definition 2 The transposed Morton-order offset of array element (i, j) 
is given by iVl V jVl ~ 1, where x ~ y denotes the left-shifting of x by 
y. Similarly, for an index tuple (i, j, k) the corresponding offset is given 
by iV2 V (jV2 ~ 1) V (kV2 ~ 2), and so on for higher dimensional arrays. 

Theorem 1 Let m and n be two integers and let mdk and ndk be their 
k-dilations, for some k. Then, if m and n are both nonnegative or both 
negative, 

m=n 
m>n 

iff mVk = nVk, 
iff mVk > nvk. 

Theorem 2 Let EBk and 8k denote the k-dilated addition and subtrac­
tion operators, such that (ivk EBk jVk) = (i + j)Vk and (iVk 8k jVk) = 
(i - j)Vk, respectively. Then 

iVk EBk jVk 

iVk 8k jVk 

(iVk + fVk + jVk) 1\ mVk, 

(iVk - jVk) 1\ mVk, 

(2.3) 

(2.4) 

where mVk is the k-dilated form of -lor 111·· ·111, and f Vk is the 
bitwise complement of mvk. 
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Note that when either of i'i;lk or j'i;lk are constants a costly run-time k­
dilation may instead be done at compile-time, and in addition, either 
i'i;lk + f'i;lk or f'i;lk + j'i;lk may be evaluated at compile-time which further 
reduces the operation count of address computations. 

Returning now to the HAT-layout, we see that the layout function of 
HAT may be written as 

LHAT(i I , ... ,im) = 

BM . Liinear(il div TI , ... ,im div Tm) + 
BE· LMorton (iI mod T I , ... ,im mod Tm), 

where BM is the size of the largest Morton ordered subarray (e.g., one 
TLB-page) and T I , ... ,Tm are the sizes along each axis of the array 
of the largest Morton ordered subarray. BE denotes the size of indi­
vidual array elements. The algebra of dilated integers may be used to 
incrementally update addresses within the Morton ordered subarrays of 
HAT. 

2.3. Experimental Evaluation 

To evaluate the performance and behavior of the HAT layout, we have 
rewritten a small set of Fortran kernels to take problem size as a com­
mand line argument and to use arrays of corresponding sizes. Compile­
time switches are used to select either column major array layout or 
HAT-layout, where the latter forms have been explicitly devised to in­
crementally update addresses of array elements by using dilated integers. 
No other changes have been made to the programs which means that 
the reported results correspond to the performance of the HAT-layout 
for row and column traversals of the arrays (i.e., non-tiled code). All 
programs were compiled using the Sun Workshop 5.0 Fortran compiler 
using near maximum optimization3 and were run on Sun Ultra 10 work­
stations equipped with 333 MHz UltraSPARC-IIi microprocessors, 2Mb 
of unified 2nd level cache, 640Mb of main memory, which run the So­
laris 2.6 operating system. Cache and TLB statistics were obtained 
using SpixToolsjShade [5] running identical binaries as used for tim­
ing measurements, configured to simulate 16Kb direct mapped data and 
instruction caches and 60-entry fully associative data and instruction 
TLBs. (Solaris alledgedly locks four TLB entries of each type for kernel 
use). Reported L1 miss rate statistics were gathered under the assump­
tions of a perfect data TLB. 

3-xtarget=ultra2 -xarch=v8plusa -xOS -depend. 



www.manaraa.com

An Efficient Semi-Hierarchical Array Layout 29 

The benchmark codes for which results are shown in Figures 2.3 
and 2.4 (GMTRY and VPENTA from the NAS kernel benchmark) were 
chosen for not exclusively traversing arrays along the most favorable 
index dimension. These codes were however not designed for the HAT­
layout. Upon inspection of the diagrams in Figures 2.3 and 2.4, it is 
immediately visible that the column major layout suffers from very high 
TLB miss rates whereas the HAT-layout suffers from rather high Ll 
miss rates. The TLB miss rates experienced by the column major lay­
out is an immediate effect of consecutive accesses not being along the 
favored index dimension. The HAT-layout is inherently more likely to 
experience high cache miss rates for regular array references, than are 
linear layouts. However, as we show in the next section, the HAT-layout 
permits accurate and precise compile-time analysis of its cache behav­
ior, which in turn enables compile-time elimination or reduction of poor 
cache behavior. 

For the HAT-layout, execution time forms a substantially smoother 
curve than for the column major layout, which by itself might be taken 
as an indication of easier optimization problems, and distinct bump in 
execution time for the VPENTA kernel corresponds directly to an in­
crease in Ll miss rates. When comparing execution times, it must also 
be remembered that for the present experiments, the HAT layout is pe­
nalized to a varying degree by the lack of compiler support. The compiler 
we have used, is completely ignorant of the HAT-layout and therefore 
does not fully detect common subexpressions or do strength reduction 
of address computations. 

3. Cache Interference & Conflict Vectors 

3.1. Cache Interference 

The results of this section rely on expressions used in array references 
being affine functions of loop-control variables from enclosing loops. For 
such index expressions the mapping of loop-control variables to array 
indices implied by a reference such as "A(I + 1, I + J + 2)" may be ex­
pressed using matrix notation: 

(2.5) 

Henceforth, such matrices of coefficients, originating from array refer­
ences will be called access matrices and similarly constant vectors such 
as [1 2]T in (2.5) are called offset vectors. 
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Figure 2.3. Execution time plus cache and TLB miss rates for the NAS GMTRY 
kernel, vs problem size. Filled dots represent column major results, and hollow squares 
represent HAT-layout results. 
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Figure 2.4. Execution time plus cache and TLB miss rates for the NAS VPENTA 
kernel, vs problem size. Filled dots represent column major results, and hollow squares 
represent HAT-layout results. 
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3.2. Conflict Vectors 

A pair of array references4 RA and RB will access memory locations 
which map to the same index in cache, and thereby possibly cause cache 
interference, only if: 

M((RA' i)) == M((RB,j)) (mod Cs), (2.6) 

where Cs denotes the size of a cache-set, and where M(·) denotes a 
function which maps memory locations to memory-lines5 (i.e., M(a) = 
a - (a mod Ls), where Ls is the cache line-size), and (', -) denotes the 
address of a memory access implied by a specific combination of array 
reference (e.g., RA) and iteration vector. For a direct-mapped cache, the 
index uniquely determines the possible location of each datum in cache 
which in turn implies that the condition in (2.6) is both necessary and 
sufficient. For set-associative caches, on the other hand, the index of a 
datum does not uniquely determine its possible locations in cache, and 
thus (2.6) is then reduced to only being a necessary condition. 

One of the main advantages of the HAT-layout is that it allows the 
solutions to (2.6) to be determined and enumerated at compile-time, 
which in turn means that potential cache interference can be detected 
and accurately quantified during compilation, at which time a larger set 
of more precise techniques can be brought to bear upon the problem. To 
capture and characterize this aspect of HAT-layout behavior, we intro­
duce the notion of conflict vectors, which is formalized by the following 
definition: 

Definition 3 For a pair of (not necessarily distinct) array references 
RA and RB, a conflict vector (denoted by ~6) is said to exist for each 
pair of iteration vectors i and j which satisfy equation (2.6) above, and 
its value is then defined by ~ = j - i. In cases when the values of ~ may 
have a dependence on an iteration vector, say i, we write this as ~(i). 

For comparison, reuse vectors [14, 9, 10] indicate the direction(s) in the 
iteration space along which one or several array references will access 
the same array element, rather than an array element that is potentially 
conflicting in cache. 

4Using the terminology of Ghosh et al. [9, 10), we refer to a static read or write in a program 
as a reference, whereas a particular execution of that read or write at runtime is a memory 
access. 
5 A memory line refers to a cache line sized-and-aligned block in memory, while a cache line 
refers to the actual block in cache to which a memory line is mapped. 
6The greek symbol e was chosen because of the acronym-like correspondence: e = xi ~ 
abbrev. cross interference. 
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3.3. Computing Conflict Vectors 

The mapping of array indices to memory locations, as well as efficient 
address computations, for arrays that use the HAT-layout have been 
described in the previous section. However, for the purpose of com­
puting conflict vectors it is more convenient to work with the reverse 
mapping, from storage locations to array indices. The mapping from 
storage locations, s, to array indices, i, implied by the Morton order for 
an m-dimensional array may be expressed as the matrix-vector product: 

i = [Im 2Im 4Im 8Im ... ] s, (2.7) 

where Im is the identity matrix of order m, and where the vector s is 
the binary encoding of the storage location. As an example, consider 
the case of a two-dimensional array; the mapping of storage locations to 
array indices implied by (2.7) is then given by 

. [1 0 2 0 4 0 8 0 ... ] s, 
1= 0 1 0 2 0 4 0 8 .. . 

and it is easily seen how the different components of i are formed from 
even and odd components (bits) of the storage location. In the case of 
a three-dimensional array, the components of i would be formed from 
every third component (bit) of s, and so on. Naturally, mappings of 
storage locations to array indices have a fundamental role in the com­
putation of conflict vectors, and for this reason, H~ where 2c is the size 
of Morton ordered subarrays, is consistently used to denote the matrix 
[Im 2Im 4Im ... 2c- 1 Im] throughout the rest of this text. 

In section 2 it is shown how, after reaching a predefined and carefully 
chosen size-limit, the HAT-layout changes from using Morton order to 
using column major order. As a consequence, the mapping of storage 
locations to array indices given in (2.7) is incomplete and needs to be 
augmented with a linear term corresponding to the transition to a lin­
ear layout. Doing so, and simultaneously replacing the left hand-side 
of equation (2.7) with the mapping from iteration space to index space 
implied by some reference, say RB, yields an expression for the corre­
spondence between iteration space coordinates and storage locations for 
that array reference: 

(2.8) 

In (2.8), j is an iteration vector, Band b are the access matrix and offset 
vector respectively of reference RB and dB denotes the dimensionality 
of array accessed through reference RB. The meaning of HdB is given 
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above and LdB is a diagonal matrix with elements identical to the sizes 
of Morton ordered subarrays along corresponding dimensions. As an 
example, given Morton ordered regions of 8192 bytes (c = 10), and an 
array reference B(I + 1,1 + J + 2) where B is a two-dimensional array of 
eight-byte elements, the corresponding instance of (2.8) is: 

[ 01 0 2 0 4 0 8 0 16 0] [32 0] 
1 0 2 0 4 0 8 0 16 s + 0 32 q, 

where j E Z2, S E {O, 1}1O, and q E Z2. 
As indicated in section 2 it is wise to chose transition points between 

linear and non-linear layouts such that an integer multiple (~ 1) of Mor­
ton ordered regions fit and are aligned in each cache-set. The usefulness 
of such a choice is due to the modulo-Cs indexing of typical caches, 
which causes the values of q-vectors in (2.8) to become largely unrelated 
to the cache behavior of reference RB. The binary vector s in (2.8) in­
dicates the offset of an array element in some Morton-ordered region. 
Since the size and alignment of Morton ordered regions is tailored to the 
cache parameters, and assuming temporarily that all array elements and 
cache lines are of equal size (how to remove this restriction is discussed 
on pages 14 and 16), the values of s for any pair of conflicting accesses 
must be equal. Thereafter, and if keeping equation (2.8) in memory, it 
is easily realized that any conflict vector €(j) of reference RB w.r.t. RA 
must satisfy 

A(j + €) + a 
Bj+ b 

(2.9) 

where S E {O, l}C, p E ZdA , q E ZdB , and where A, B and a, b are the 
access matrices and offset vectors of references RA and RB respectively. 
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Cache interference phenomena are conventionally categorized as being 
due either to self-interference or cross-interference [14]. Self-interference 
represents the case when it is memory accesses of the same reference that 
interfere in cache, and cross-interference represents all other cases of 
interference. To simplify the presentation, and to remain "compatible" 
with existing literature, the computation of conflict vectors is described 
separately for self-interference and for cross-interference. 

3.4. Self Interference 

When references RA and RB are not distinct, we have A = Band 
a = b, and of course dA = dB in equation (2.9), which may then (because 
of Ht = H dB ) be rewritten as: 

which in turn is easily reduced to 

(2.10) 

where r = (p - q) E Zdf! Equation (2.10) is a system of linear Diophan­
tine equations, and as such it may be solved by anyone of the existing 
methods for solving such systems of equations, see for example, [21] (p. 
52-59) or [26] (p. 106-117). By the theorem below, the set of integer 
solutions to (2.10) can be represented by a set of linearly independent 
integer vectors: 

Theorem 3 For any matrix A E Qmxn and vector b E Qm such that 
Axo = b for Xo E zn, a set of integral vectors Xo, Xl, ... ,Xt, exist, such 
that 

where Xl, ... ,Xt are linearly independent, and t = n - rank(A). 
Proof: See Corollary 4.1c in [21] (p. 45-48). 

Note that solutions to (2.10) where ~ belongs to the nullspace or kernel 
of B (i.e., ~ E {alBa = OJ, commonly denoted by ~ E null (B) or 
~ E ker(B)) represent temporal reuse rather than potentially conflicting 
accesses. The components of solution vectors corresponding to r lets us 
distinguish between reuse and conflict without computing the nullspace 
of B. Any solution representing a potential conflict must have some 
non-zero r-component, since otherwise the pair of accesses are in fact 
accessing the same location which by definition is a case of reuse. Thus, 
the set of self-conflict vectors is chosen as the ~-components of the basis 
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indicated by Theorem 3, for which the r-components are non-zero. For 
multi-word cache-lines, potential conflicts exist that do not satisfy (2.10). 
An augmented set of self-conflict vectors corresponding to multi word 
cache lines of some known constant length can be obtained by solving 
variants of (2.10) with different right hand sides corresponding to how 
the Morton order in question maps array elements to cache lines. Doing 
so yields sets of slightly different conflict vectors for adjacent iterations, 
which may be more conveniently and compactly represented by the union 
of all such sets, albeit at the loss of some precision. 

Under the assumption that base-addresses of multidimensional arrays 
that use the HAT-layout are aligned on cache-set boundaries, an identi­
cal derivation of conflict vectors applies also to references which access 
different arrays, but which use otherwise identical access expressions. 
However, in the latter case, solutions for which e E ker(B), including 
e = 0 do represent true conflicts. Alternatively, assume the same con­
straints as immediately above, with the exception that arrays using the 
HAT layout are not constrained to cache-set boundaries, but that the 
relative alignment of such arrays is somehow known. Then the expression 
corresponding to equation (2.10) will (typically) have a non-null right 
hand-side, corresponding to the difference in alignment of the arrays. 

3.5. Cross Interference 
For a pair of distinct references RA and RB, possibly to arrays of dif­

fering dimensionalities, (2.9) can not be simplified in the manner done 
for self-interference above. Furthermore, cross-interference behavior is 
inherently more varied and more complex to characterize. By trying to 
solve (2.9) directly, the regularity and structure which exist among solu­
tions easily becomes obscured. Instead it is useful to study a "reduced" 
system of equations, corresponding to the iterations j' such that the 
references RA and RB without offset vectors, would access conflicting 
locations: 

Aj' 
Bj' (2.12) 

where s' E {O,1}e, p' E ZdA , q' E ZdB , and where A and B are the 
access matrices of references RA and RB, respectively, and j' is an iter­
ation vector. The significance of (2.12) is that for any pair of solutions 
{(j, s, p, q), 0', s', p', q')} to (2.9) and (2.12) such that sT . s' = 0, we 
clearly have em = eo + j') since e(j') = 0, thus specifying translational 
symmetry in the solutions to (2.9). As shown below, the sets of j' sat­
isfying (2.12) are easily obtained for typical index expressions. Space 
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limitation prevent us from including proofs, which may instead be found 
in Chapter 6 of [7]. 

To establish the results just stated, we begin with definitions which 
distinguish between types of s'-vectors satisfying (2.12)' which motivates 
us to rephrase (2.12) slightly, and label equation instances corresponding 
to different dimensionalities of S': 

Sc = {S' E {O, l} c l :3j', pi, q': 

H c I A" LC '1\ H C I B" LC '} (2 13) dA S = J - dAP dBS = J - dBq· . 

Definition 4 A vector s' E Sc is said to be reducible (in Sc) whenever 
s' = S'l + S'2' s\, S'2 E Sc and S'1 ::f 0, S'2 ::f O. Vectors s' E Sc which 
are not reducible are said to irreducible, among which the nullvector, 0, 
of appropriate dimensionality is always present due to it being a trivial 
solution to (2. 12}. 

Theorem 4 For any pair of array references RA, RB such that A and B 
have elements constrained to the set { -1,0, I}, the set of binary vectors 
Sc is generated by a unique subset of Sc consisting only of irreducible 
vectors. 

First, each irreducible element of Sc corresponds to an irreducible ele­
ment of So-I' Thus, given the set of irreducible elements of So-I, the 
irreducible elements of Sc may be found by extending each irreducible 
element s E Sa-I (beginning with s = 0) to [s T 1 F and testing for mem­
bership in Sc. 

Having obtained a complete set of irreducible s' ESc, we may solve 
(2.12) for each such S': 

using standard methods [21,26]. By doing so, a set of solutions for j', 
on the form j' = {ulu = Vo + AIVI + ... + AkVd, is determined for each 
irreducible S', where in turn,~(j) =~(j+j') for eachj such that STS' = 0, 
where s is the location corresponding to j. Note that when the conditions 
of theorem 4 are not satisfied by a pair of references, the members s' of 
Sc may be determined by enumeration of all elements in {O,lY and 
attempting to solve (2.12) for each such s' E {O, l}c. Typically, however, 
the elements in access matrices of multi-dimensional arrays are small, 
giving theorem 4 wide applicability in practice. 

Finally a full cross-interference characterization may be determined 
as the solution to (2.9) for each s rJ. Sc, which minimizes 11~1h- The cross­
interference behavior of the pair of references is then perfectly described 
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for each location 5, by its conflict vector € and the sets of iteration vectors 
obtained by solving (2.12) for each irreducible 5' ESc. Note that for cross 
conflicts between arrays of equal dimensionality and equal-size elements, 
storage locations are sufficiently well identified by their corresponding 
array indices, and thus (2.9) may be simplified to 

in such cases. 

A(j +€) + a 
Bj+ b 

(2.14) 

For multi-word cache lines, an augmented set of conflict vectors is 
obtained by solving several instances of (2.9) wherein Ht 51 and HdB52 
are used instead of Ht 5 and HdB 5, respectively, with 51 52 being dif­
ferent locations belonging to same cache line [7]. 

3.6. Examples 
The following program fragment originates from the SPEC95 

TOMCATV-benchmark: 
DO J = 3, N-1 

DO 1 = 2, N-1 
R = AA(I,J) * D(I,J-1) 
D(I,J) = l.Oj(DD(I,J) - AA(I,J-1)*R) 
RX(I,J) = RX(I,J) - RX(I,J-1)*R 
RY(I,J) = RY(I,J) - RY(I,J-1)*R 

END DO 
END DO 

wherein all arrays (AA, 0, DO, RX, RY) have double precision elements. 
Since the access matrices are identical for all array references above 
and all arrays are two-dimensional with dou ble precision elements, the 
matrices Band LdB in (2.10) are identical for all array references leading 
to identical self-interference €-vectors. For values of Band LdB given by 

[ 1 0] c [64 0] B = Oland LdB = 0 32 ' 

corresponding to the access matrices of the references above, and a cache 
set-size of 16Kb (c = 14), the corresponding set of self-interference €­
vectors, as determined by solving (2.10) 

as expected. The set of €-vectors between references to distinct arrays 
that use identical index expressions becomes 
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and the set of cross-interference €-vectors for pairs of the two distinct 
index expressions present in the program fragment above is obtained by 
solving (2.14), which yields €-vectors 

€ = [ ~] and € = [ ~1 ] 

respectively. 
As our second example of €-vector computation, we consider the fol­

lowing program fragment (from the NAS GMTRY kernel) which per­
forms gaussian elimination: 

DO l=l,MATDIM 
RMATRX(I,I) = l.OjRMATRX(I,I) 
DO J=I+l, MATDIM 

RMATRX(J,I) = RMATRX(J,I) • RMATRX(I,I) 
DO K=I+l, MATDIM 

RMATRX(J,K) = RMATRX(J,K) - RMATRX(J,I) • RMATRX(I,K) 
END DO 

END DO 
END DO 

As in the previous example, all arrays are two-dimensional and have 
double precision elements so that a simpler form of (2.12) derivable from 
(2.14) may be used for computing cross-interference. For the pair of 
references MATRX(J,I), MATRX(I,K), the linear system to solve becomes 

z 

[ ~ 
0 0 -64 0 0 1] 

j 

[ ~ ] [n 
0 1 0 -32 0 

k 

1 0 0 0 -64 Pi 

0 0 0 0 0 P2 
qi 
q2 

for which one finds that 

[ i ] = Aj [ ~ ] + A2 [ ! ] + A3 [ 3~2 ] 

gives the translational symmetry of the complete set of solutions. Enu­
merating all individual solutions here would clearly require too much 
space and is easily obtained by scanning the region given above. Hence 
we conclude our examples by saying that the process is repeated for each 
distinct pair of references in a loop nest in order to obtain complete in­
formation on the cache behavior. 
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4. Related Work 

Array layout has received much attention in the context of automatic 
array alignment and distribution for distributed memory machines [2, 
11, 13]. In the context of uni-processor memory hierarchies, the work of 
Chatterjee et al. [3, 4] is the most similar to ours. They investigate and 
evaluate an array layout which is essentially identical to the HAT-layout, 
but which uses a set of smallest tile-sizes within which linear layouts. 
Significant performance gains are reported for some hand-tailored tiled 
algorithms using their layout. The basic properties of Morton ordering 
have been provided multiple times in the literature, the most recent such 
report being that of Wise [25]. 

With respect to program analysis, our work is most closely related 
to the Cache Miss Equations [9, 10]. The cache miss equations (CME) 
framework, developed by Ghosh et at., identify cache-misses as integer 
solutions to specific equations. The CME solution count could possibly 
be used to select between a limited number of transformations, but it 
is costly to compute even though faster, approximative methods have 
recently been suggested [24]. Furthermore, unknown array bounds turn 
up in the equations and counting the solutions would then imply solving 
the CME symbolically which seems prohibitively difficult. This, how­
ever, is not a fault of the CME-framework, but a direct consequence of 
linear array layouts. 

Lam el al. point out the destructive effects of self-interference for tiled 
algorithms, and show how tile-sizes may be selected at run-time to avoid 
self-interference. Subsequently Coleman and McKinley [6] generalized 
and improved the techniques of Lam et al .. Carter et al. [1] discuss hier­
archical tiling schemes for a hierarchical shared memory model. Rivera 
and Tseng [18, 19] evaluate different heuristics for intra- and inter-array 
padding as a means of avoiding conflicts. Temam et at. have studied at 
data copying as a means to avoid cache interference in tiled loops [22]. 
Kodukula et at. have developed a seemingly flexible data-centric ap­
proach to loop tiling, called "shackling", which handles imperfect loop 
nests and may be used to tile for multiple levels of a memory hierarchy. 
The common focus on storage suggests that data shackling might be a 
suitable starting-point for developing more comprehensive optimization 
frameworks for the HAT-layout. 

5. Conclusions 

We have investigated a hierarchically tiled array layout, HAT, from a 
compiler perspective. The main advantage of this layout is that logical 
data locality in multi dimensional arrays consistently results in effective 
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data locality at run-time, and that it makes compile-time analysis with 
respect to memory system performance feasible. This makes it possi­
ble to construct compilers which perform automatic tiling, and other 
compile-time optimizations, with a higher degree of accuracy and preci­
sion than allowed by linear array layouts. 

With respect to cache hit rates, HAT inherently has a disadvantage for 
codes with regular array accesses. On the other hand, the HAT-layout 
makes codes with regular array accesses analyzable so that poor cache 
behavior can be detected and avoided at compile-time. A consequence 
of this is that the HAT-layout also could be interesting for applications 
where predictability is more important than average performance, such 
as in real-time systems. 

Future work includes developing and evaluating automatic methods 
for selecting loop tile sizes and data copying, based on the information 
provided by the conflict vectors. 
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Abstract 
Tile-size selection is known to be a complex problem. This paper de­

velops a new selection algorithm targeting relaxation codes. Unlike pre­
vious algorithms, this new algorithm considers the effect ofloop skewing, 
which is necessary to tile such codes. It also estimates loop overhead 
and incorporates them into the execution cost model, which turns out 
to be critical to the decision between tiling a single loop level vs. tiling 
two loop levels. Our preliminary experimental results show a significant 
impact of these previously ignored issues on the execution time of tiled 
loops in relaxation codes. In our experiments, we measured the cache 
miss rate and the execution time of five benchmark programs on a sin­
gle processor and we compared our algorithm with previous algorithms. 
Our algorithm achieves an average speedup of 1.27 to 1.63 over all the 
other algorithms. 

Keywords: Data locality, loop skewing, loop tiling, optimizing compiler 

1. Introduction 

Memory access latency has become the key performance bottleneck 
on modern microprocessors. An important approach to reduce average 
latency is to exploit data locality on the cache memories and the transla­
tion lookaside buffer (TLB). Tiling is a well-known compiler technique to 
enhance data locality such that more data can be reused before they are 
replaced from the cache [24]. Tiling transforms a loop nest by combining 
strip-mining and loop interchange. Loop skewing and loop reversal are 
often used to enable tiling [21]. Figure 3.1 shows SOR relaxation as an 
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example. Figure 3.1(a) shows the original loop nest in SOR, and Fig­
ure 3.1(b) shows the tiled SOR in which loop J is skewed with respect 
to loop T, and Figure 3.1(c) shows the tiled SOR in which loops J and 
I are skewed with respect to loop T. 

Much of previous work on tiling applies to perfectly-nested loops 
only [8, 21, 22, 24]. Recently, we proposed a new technique to tile a 
class of imperfectly-nested loops [17, 18]. Performance of a tiled loop 
nest can vary dramatically with different tile sizes [9]. How to select 
proper tile sizes is hence an important issue. In this paper, if loop skew­
ing is applied before tiling, such a tiling is called skewed tiling. All previ­
ous work tacitly assumes non-skewed tiling [4,6,9, 12, 16,23]. However, 
such an assumption may not be true, especially for loops which perform 
iterative relaxation computations [17, 18]. Another important factor ig­
nored in previous work is the loop overhead in terms of the increased 
instruction counts due to the increased loop levels. Further, tiling a 
software-pipelined loop will also increase the dynamic count of load in­
structions. In this paper, we shall show that these previously ignored 
factors can have a significant effect on tile-size selection. 

In our recent work [17], we present a memory cost model to estimate 
cache misses, assuming that only one loop level is tiled. In this paper, we 
present a more general scheme by considering two loop levels which may 
both be tiled. We present an algorithm to compute tile sizes such that 
during each tile traversal, capacity misses and self-interference misses 
are eliminated. (Our tile-size selection algorithm is called STS.) Fur­
ther, cross-interference misses are eliminated through array padding [15]. 
Given a tile size, we model the tiling cost based on both the number of 
cache misses and the loop overhead. To choose between tiling one loop 
level vs. tiling two loop levels, our algorithm computes their lowest costs 
and the respective tile sizes. We then choose the tiling level, and the 
corresponding best tile size, which yields the lowest cost. One can easily 
extend our discussion to higher loop levels, but such an extension does 
not seem useful for applications known to us. 

In this paper, we consider data locality and performance enhancement 
on a single processor whose memory hierarchy includes cache memories 
at one or more levels. We have applied our tile-size selection algorithm 
to five numerical kernels, SOR, Jacobi, Livermore Loop No. 18 (LLI8), 
tomcatv and swim, using a range of matrix sizes. We evaluate our algo­
rithm on one processor of an SGI multiprocessor and on a SUN unipro­
cessor workstation. We compare our algorithm with TLI [3], TSS [4], 
LRW [9] and DAT [13]. Experiments show that our algorithm achieves 
an average speedup of 1.27 to 1.63 over all these previous algorithms. 
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DO T = 1,ITMAX 
DOJ=2,N-1 

DO 1= 2,N - 1 
A(I, J) = 

(A(I,J) 
+A(I+1,J) 
+A(I-1,J) 
+ A(I,J + 1) 
+ A(I, J - 1))/5 

END DO 
END DO 

END DO 

(a) Before transformation 

DO JJ= 2,N - 1 + ITMAX,B 1 

DO II= 2,N - 1 + ITMAX,B, 
DO T = 1,ITMAX 

DO J = max(JJ- T,2), 

DO JJ = 2,N - 1 + ITMAX,B 1 

DO T = 1, ITMAX 
DO J = max(JJ- T,2), 

min(JJ- T + Bl - 1,N - 1) 
DOI=2,N-1 

A(I, J) = A(I, J) + A(I + 1, J) 
+A(I - 1,J) + A(I,J + 1) 
+A(I, J - 1))/5 

END DO 
END DO 

EDN DO 
END DO 

(b) After skewing and "l-D" tiling 

min(JJ- T + Bl - 1,N - 1) 
DO 1= max(II - T, 2), 

min(II - T + B, - 1, N - 1) 
A(I, J) = A(I, J) + A(I + 1, J) + A(I - 1, J) 

+A(I, J + 1) + A(I, J - 1))/5 
END DO 

END DO 
EDN DO 

END DO 
END DO 

(c) After skewing and "2-D" tiling 

Figure 3.1. An example of tiling: SOR relaxation. 

47 

In the rest of the paper, we first compare with related work in Section 
2. We present a background in Section 3. We then present our memory 
cost model in Section 4. We model the execution time and present our 
tile-size selection algorithm in Section 5. In Section 6, we experimentally 
compare our algorithm with previous algorithms. Finally, we conclude 
in Section 7. 

2. Related Work 

2.1. Competing Tile-Size Selection Schemes 

Several tile-size selection algorithms have been proposed previously: 
TLI by Chame and Moon [3], TSS by Coleman and McKinley [4] (and 
a variation of TSS by Rivera and Tseng [16]), LRW by Lam et al. [9] 
and DAT by Panda et at. [13]. These algorithms, although targeting 
more general programs than our STS algorithm, ignore loop skewing for 
relaxation codes when computing the tile size. They also only consider 
L1 data cache. However, STS considers L1 data cache, L2 cache and 
TLB. 

Among all arrays in a tiled loop, LRW, TSS and TLI choose the tile 
size to eliminate certain kinds of cache misses due to a dominant ar-
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Table 3.1. Comparison between various tile-size selection algorithms 

LRW TSS TLI STS DAT 
Loop Skewing No No No Yes No 
L 1 data cache Yes Yes Yes Yes Yes 
L2 cache & TLB No No No Yes No 
Dominant Array Yes Yes Yes No No 
Padding No No No Yes Yes 
Loop overhead No No No Yes No 
Tile shape squ. rect. recto recto squ. 
Tile dimensions 2 1,2 1,2 1,2 2 

ray, while ignoring all other arrays. On the other hand, DAT and STS 
consider all arrays. Among all tile-size selection techniques, only DAT 
and STS utilizes padding, a data transformation technique to eliminate 
certain interference misses [15]. Only STS takes loop overhead into con­
sideration, which is proven important by our experiments in Section 6. 
LRW and DAT requires a square tile shape, while TSS, TLI and STS 
allow a rectangular one. Consequently, the former only allow 2-D tiling, 
while the latter allow both 1-D and 2-D tiling. Table 4 summarizes the 
comparison between various algorithms, where "squ." means "square" 
and "rect." means "rectangular". 

2.2. Other Related Work 

Ghosh et al. estimate cache misses, given a tile size, for a perfect 
loop nest [6]. They also informally discuss a tile-size selection scheme 
using matrix multiplication as the example. No formal algorithm is 
presented, however. They do not discuss the estimation of cache misses 
for imperfectly-nested loops. Therefore, we are not able to compare with 
their method in our experiments. 

Ferrante et al. present an algorithm to estimate the number of distinct 
cache lines over a perfect loop nest [5]. Temam et al. d,'rive an analytical 
method to estimate the number of self-interference misses [20]. Mckinley 
et al. present a simple cost model to estimate the number of cache 
misses [11]. These methods do not consider the effect of loop skewing. 

Rivera and Tseng present several padding algorithms to eliminate 
cache conflict misses [15, 16]. Manjikian and Abdelrahman use cache 
partitioning to scatter arrays evenly in the cache, such that cross-interfer­
ence misses are minimized [10]. We use a different padding scheme which 
seems more suitable for our algorithm. 
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3. Background 

In this section, we first define our program model and a few key pa­
rameters. We then discuss the issues of the memory hierarchy. 

3.1. Skewed Tiling 

Our program model allows a class of imperfectly-nested loops. Fig­
ure 3.2( a) shows a representative loop nest before tiling, where the 
T-Ioop body consists of m perfectly-nested loops. The depth of each 
perfectly-nested inner loop is at least two. The loop bounds Lij and Uij, 
1 ::; i ::; m, j = 1,2, are T-invariant. We assume that the iteration space 
determined by J and I remains unchanged over different T-Ioop index 
values. For simplicity of presentation, we also assume that cache-line 
spatial locality is already fully exploited in the innermost loops except 
on the loop boundaries. Figure 3.2(b) shows the code after tiling the Ji 
loops only (1-D tiling), and Figure 3.2(c) shows the code after tiling both 
Ji and Ii loops (2-D tiling). In Figures 3.2(b) and 3.2(c), the iteration 
subspace defined by all Ji and Ii loops is called a tile. Loop T is called 
the tile-sweeping loop, and loops JJ and II are called the tile-controlling 
loops [21]. Each combination of JJ and II defines a tile traversal. Two 
tiles are said to be consecutive within a tile traversal if the difference 
of the corresponding T values equals 1. In this paper, we assume the 
data dependences permit both I-D and 2-D tiling. Choosing between 
1-D vs. 2-D tiling will depend on the estimate of cache misses and loop 
overhead. As far as estimating cache misses is concerned, 1-D tiling can 
be viewed as a special case of 2-D tiling with the maximum tile height. 
However, 2-D tiling incurs higher loop overhead, which we want to take 
into account. 

Let /1 = min{ LillI ::; i ::; m}, /2 = max{ Ui111 ::; i ::; m}, "11 = 
min{Li211::; i::; m} and "12 = max{Udl ::; i ::; m}. We call Sl and S2 
the skewing factors corresponding to Ji and Ii loops respectively. (The 
skewing factors are also called the slope in our previous work [17, 18].) 
If S1 = 0, then loop skewing is not applied before tiling at the Ji level. 
In this paper, we are interested only in skewed tiling at least at the Ji 
level, thus S1 > O. B1 is called the tile width and B2 is called the tile 
height. B1 and B2 are called the tile size collectively. These parameters 
are used to define the bounds of the tile-controlling loops. For reference, 
Tables 3.2 and 3.3 list all the symbols used in this paper and their brief 
descriptions. 

For simplicity, we assume all arrays are of two dimensions with the 
same column sizes. (We assume column-major storage.) Lower dimen­
sion variables can be ignored due to their lesser impact on cache misses 
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DO T = 1, ITMAX 
DO J , = Lll,Ull 

DO 1, = L ,2 , U ,2 

END DO 
END DO 

DO J= = L=1,U=1 
DO 1= = L=2, U=2 

END DO 
END DO 

END DO 

(a) 

DO JJ=I','2+5, * (ITMAX.l),B , 
DO II = '11, '12 + 52 * (ITMAX.l), B2 

DO T =h(JJ, II),g2(JJ, If) 
DO J , = L~'" U;', 

DO h = L~'2'U:~ 
END DO 

END DO 

END DO 
END DO 

END DO 
END DO 

END DO 

(e) 

DO JJ = ,1,,2 + 5, * (ITMAX.l), B, 
DO T = h(JJ),g,(JJ) 

DO J , = L~" U;, 
DO 1, = L ,2 , U ,2 

END DO 
END DO 

DO Jrn = L~l J U:nl 
DO 1= = L=2, U=2 

END DO 
END DO 

END DO 
END DO 

(b) 

Figure 3.2. The program model before and after tiling 

in relaxation programs which we are interested in. Let na be the num­
ber of two dimensional arrays for the given tiled loop nest. Within the 
innermost loop Ii, 1 ~ i ~ m, of the untiled program in Figure 3.2(a), 
we assume array subscript patterns of Ak(Ii + a, Ji + b), 1 ~ k ~ na , 

where a and b are known integer constants. 
Although we restrict our program model to be either 1-D or 2-D tiling 

and restrict all arrays to be of two dimensions, such restrictions can be 
relaxed. We can have n-D tiling by extending our tiling technique in [18]. 
We can also allow high-dimensional arrays by extending our memory 
cost model and execution cost model. However, such extension to high­
dimensional tiling and arrays seems unnecessary for the applications we 
currently have met. 
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Table 3.2. Description of symbols 

Symbol Description Symbol Description 
Sl The skewing factor for Ji loops Bl The tile width 
S2 The skewing factor for Ii loops B2 The tile height 
N The array column size , ,2 -,1 + 1 
T Defined in Section 4 '1 '72 - '11 + 1 

nl Defined in Section 5.1 n2 Defined in Section 5.1 
n3 Defined in Section 5.1 n4 Defined in Section 5.1 
n5 Defined in Section 5.1 So Defined in Section 4 

3.2. Memory Hierarchy 

The memory hierarchy includes registers, cache memories at one or 
more levels, the main memory and the secondary storage, as well as the 
TLB [7]. 

The TLB translates a virtual address into a physical address. The 
TLB has two key parameters, namely the block count Tc and the block 
size n. We call Ts == TcTb the TLB size. In this paper, n is the size of 
the virtual memory represented by each TLB entry in the number of data 
elements. We assume a fully-associative TLB with an LRU replacement 
policy. 

For simplicity of presentation, we consider two levels of caches in 
this paper, namely the L1 and L2 caches, which are common in current 
practice. The Ll cache has several parameters, namely the cache size 
C s1 , the cache block size Cb1 and the set associativity Cal. C s1 and Cb1 

are measured in the number of data elements. Similarly for L2 cache, 
the cache size, cache block size and set associativity are C s2 , Cb2 and 
Ca2 respectively. The cache misses can be divided into three classes [7]: 
compulsory misses, capacity misses and conflict misses. Conflict misses 
can be attributed to self-interference misses of the same array and to 
cross-interference misses between different arrays. 

4. A Memory Cost Model 

In this section, we want to estimate the number of cache misses in­
curred by executing the loop nest in our program model after tiling. 

Let So represent the iteration space defined by /1 ::; Ji ::; /2 and 
7]1 ::; Ii ::; 7]2 in Figure 3.2(a). (For simplicity, we also regard So as 
the original iteration space defined by Ji and Ii loops in Figure 3.2(a), 
as if all Ji loops have the same loop bounds and all Ii loops have the 
same loop bounds.) So is illustrated in Figure 3.3(a) by the rectangle 
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Table 3.3. Description of symbols (cont.) 

Symbol Description 

/'1 The minimum lower bound of all Ji loops 

/'2 The maximum upper bound of all Ji loops 
,.,1 The minimum lower bound of all Ii loops 

f/2 The maximum upper bound of all Ii loops 
na The number of arrays in the given loop nest 
n The number of data elements each TLB entry can represent 
Tc The number of TLB entries 
Ts The TLB size in the number of data elements 
CsI The Ll cache size in the number of data elements 
C bl The Ll cache line size in the number of data elements 
Cal The Ll cache set associativity 
Cs2 The L2 cache size in the number of data elements 
Cb2 The L2 cache line size in the number of data elements 
Ca2 The L2 cache set associativity 

PI The Ll cache miss penalty 

P2 The L2 cache miss penalty 
(J' The array footprint width constrained by the TLB (see Section 5.2.3) 

ITMAX The maximum index value for the tile-sweeping loop 
W The working-set size of the loop nest (Figure 3.2(a)) 

enclosed by the solid lines with the height 'TJ and the width 'Y. Within 
each tile traversal, we define the base tile to be a tile with T = 1 and an 
advanced tile to be a tile with T > 1. The dashed-lines in Figure 3.3( a) 
separate the base tiles of different tile traversals. The two shaded areas 
illustrate two different tile traversals, ttl and tt2, where each shaded 
rectangle with solid-line boundaries represents an advanced tile. When 
the tile-sweeping loop T increases the index by 1, the tiles can only 
overlap partially. 

The cache misses incurred by one tile traversal can be partitioned 
into those within the base tile and those within the advanced tiles. Note 
that only those base tiles and advanced tiles overlapping with So will 
be executed, thus only they can contribute to the cache misses. In 
Figure 3.3( a), the base tile in the tile traversal ttl resides outside So, 
while the base tile in tt2 resides within So. 

We make the following two assumptions in our estimation of the num­
ber of cache misses: 

• Assumption 1: There exist no cache reuse between different tile 
traversals. 

• Assumption 2: Bl ~ 'Y and Bl ~ (ITMAX-l) * SI. 
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Figure 3.3. Illustration of tile traversal 

Assumption 1 is reasonable if ITMAX is large, since it will be very 
likely for a tile traversal to overwrite cache lines whose old data could 
have been reused in the next tile traversal. Assumption 2 is reasonable 
because a large Bl can easily cause an overflow in the TLB. As explained 
later in Section 4, our algorithm poses a constraint on Bl such that TLB 
should not overflow. If the tile size (Bl' B2) is chosen properly, there 
should be exactly one cache miss for each cache line accessed within a 
tile traversal. To be more specific, the following two properties should 
hold: 

• Property 1: No capacity and self-interference misses are gener­
ated within a tile traversal. 

• Property 2: No cross-interference misses are generated within a 
tile traversal. 

In Section 5.2, we shall discuss how to preserve the above properties. 
For now, we assume they hold. 

We first show how to compute the number of Ll cache misses caused 
by an advanced tile. Let W represent the size of the data set accessed 
by the original loop nest in terms of the number of data elements. The 
average size of the data accessed by one tile is estimated to be D = 
~ * B I B2 • Figure 3.3(b) shows two consecutive tiles, tt3 and tt4, within 
a tile traversal, assuming that both tiles reside within So. The iteration 
subspace of tt4 is produced by shifting the iteration subspace of tt3 
upwards by S2 iterations and to the left by SI iterations. The Ll cache 
misses in tt4 either occur in Region ABeD or in Region DEFG. The total 
estimated Ll cache misses equal to (SIB2 + S2Bl - SIS2) * we . (This 

'"'iT} bl 
estimate may not be exact because data accessed at the lower border of 
Region DEFG mayor may not be in the cache already.) 
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We now show how to accumulate the number of L1 cache misses for 
all the tile traversals with the same JJ value. Figure 3.3( c) illustrates 
the idea. For a particular JJ value, let t1, t2, t3 and t4 be the base 
tiles of four tile traversals, and let t~, t~, t; and t~ be the corresponding 
advanced tiles when T increases by 1. In this particular illustration, the 
number of L1 cache misses caused collectively by ti (1 ~ i ~ 4) equals to 
the sum of the number of L1 cache misses caused by each individual ti, 
that is, ~J:~ . Note that only the tiles overlapping with 80 can contribute 
to L1 cache misses. Similarly, the number of L1 cache misses caused by 
the advanced tiles t~ (1 ~ i ~ 4) equal to the sum of the number of L1 
cache misses caused by individual t~, that is, Sel W + 2(Bl - 81)82 * We . 

"I bl "IT} pI 
In general, the number of L1 cache misses caused by the advanced tiles 
with the same JJ value equal to ~el W + T(BI - 8d82 * we ,where T is 

, bl "IT} b). 
the number of base tiles in 8 0 for a particular JJ estimated as 

if 1 ~ B2 < ", + 82 * (ITMAX-1) 
if B2 = ", + 82 * (ITMAX-1) 

The value", + 8 2 * (ITMAX-l) is the maximum height of the itera­
tion space after tiling. Any B2 value greater than or equal to ", + 8 2 * 
(ITMAX-l) results in no tiling at the Ii loop level. 

With Assumptions 1 and 2 and Properties 1 and 2 standing, we have 
the following formulas to estimate the number of cache misses. Their 
derivation can found in [19]. 

The total number of L1 cache misses for 2-D tiling is approximately 

W8dITMAX-l) W8z(ITMAX-l) 
C + . 

bl B I Cbl B 2 
(3.1) 

The number of L2 cache misses for 2-D tiling is approximately 

W8dITMAX-l) W8z(ITMAX-l) 
-~---...:...+ . 

Cb2 Bl Cb2 B2 
(3.2) 

With 1-D tiling (in Figure 3.2(c)), the L1 cache temporal locality is 
not exploited across the T-Ioop iterations. The number of L1 cache 
misses is approximately 

W 
ITMAX*-C . 

bl 
(3.3) 

The total number of cache misses for the L2 cache is approximately 

W81 (ITMAX-l) 

Cb2 Bl 
(3.4) 
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5. Tile-Size Selection 

In this section, we first present an execution cost model for tiling with 
a given tile size, based on both the number of cache misses and the loop 
overhead. We then present our tile-size selection algorithm, followed by 
a running example to go through our algorithm. 

5.1. An Execution Cost Model for Tiling 

Loop tiling introduces loop overhead. To decide between 1-D tiling 
and 2-D tiling, the overhead of the tiled Ii loops in Figure 3.2(c) needs 
to be measured. Let nl be the sum of the static number of instructions 
for the computation of all the Ii loop bounds (1 :s; i :s; m). The Ii loop 
overhead due to 2-D tiling in terms of the dynamic count of instructions, 
is measured approximately by 

(3.5) 

Let n2 be the sum of the static number of instructions in the Ii (1 :s; 
i :s; m) loop bodies. The dynamic instruction count for the Ii loop bodies 
IS 

n2 * ITMAX * 'Y * Tf· (3.6) 

From (3.5) and (3.6), if nl and n2 are approximately equal, then a 
small B2 will introduce large loop overhead. Let n3 be sum of the static 
number of instructions for the computation of all the Ji loop bounds 
(1 :s; i :s; m). The loop overhead due to tiled Ji loops can be measured 
by 

ITMAX* 'Y 
n3 * Bl (3.7) 

Enabled by scalar replacement [2], in a software-pipelined loop [1], 
loaded data can be reused in different iterations. The dynamic count 
of load instructions can hence be reduced. Let n4 be the sum of the 
static count of load instructions in the prologues and the epilogues of all 
the software-pipelined loops. Let n5 be the sum of the number of load 
instructions divided by the unroll factor in the software-pipelined loop 
bodies. The unroll factor is one if the loop is not unrolled. The dynamic 
count of load instruction with 1-D tiling is approximately 

(n4 + n5'Yb * ITMAX. (3.8) 
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With 2-D tiling, the dynamic count of load instructions is approxi­
mately 

Clearly, if n4 is significantly greater than n5 and B2 is small, then the 
dynamic count of load instructions with 2-D tiling can be much greater 
than that with 1-D tiling. 

Let PI be the penalty for an L1 cache miss and P2 be the penalty for an 
L2 cache miss. By adding the penalty due to L1 cache misses in Formula 
(3.3), the penalty due to L2 cache misses in Formula (3.4), the loop 
overhead due to tiled Ji loops in Formula (3.7), and the dynamic count 
of load instructions for software-pipelined innermost loops in Formula 
(3.8), we can model the execution cost for 1-D tiling by 

* (ITMAX * lL) + * (WSI (ITMAX-l)) PI C bl P2 C b2 B l 

(3.10) 

In the above formula, we assume the latency of one unit of time for 
each instruction, including a load instruction. From (3.10), with 1-D 
tiling, we want to maximize BI (subject to Properties 1 and 2 afore­
mentioned) such that the number of L2 cache misses is minimized. By 
adding the penalty due to L1 cache misses in Formula (3.1), the penalty 
due to L2 cache misses in Formula (3.2), the dynamic count of load in­
structions for software-pipelined innermost loops in Formula (3.9), the 
loop overhead due to tiled Ji loops in Formula (3.7), and the loop over­
head due to the tiled innermost loop in Formula (3.5), the execution cost 
for 2-D tiling can be modeled by 

* (WSI (ITMAX-l) + WS2 (ITMAX-l)) + * (wsl (ITMAX-l) + 
PI CblB I C bl B 2 P2 C b2 B 1 

WS2 (ITMAX-l)) + n * ITMAX*'Y*17 + n ITMAX*'Y 
C b2 B 2 I B2 3 Bl 

(3.11) 

5.2. Tile-Size Selection Algorithm 

In this section, we first discuss how to preserve Properties 1 and 2. 
We then present our tile-size selection algorithm. 
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Procedure EnumFPSize(C" C b , N) 

for F2 t- 1 to N do 

F, t- 1 

t t- (F, oN) mod C, 

while ((F2 + C b - 1) :s t :s (C, - F2 - Cb + 1» 

Record (F" F 2 ) 

F, t- F, + 1 

t t- (F, 0 N) mod C, 

end while 

end for 

(a) 

57 

01 01 OJ D4 

(b) 

01 02 OJ 

(c) 

Figure 3.4. Procedure EnumFPSize and an illustration of utilizing portions of the 
cache by a single tile 

5.2.1 Preserving Property 1. First, we discuss how to elim­
inate self-interference misses within a single tile. For any array Ai, let 
R be the minimum rectangular array region which contains all the Ai 
elements referenced within a tile t. We say that Ai'S footprint size within 
tile tis (Fl' F2), where Fl and F2 are the numbers of columns and rows 
in R respectively. We call Fl (F2) the array footprint width (height) for 
Ai within tile t. Reversely, given a footprint size of Ai, the tile size can 
also be computed. Given the subscript patterns and the loop bounds, 
such a computation is straightforward and we omit the details. For the 
example of SOR (Figure 3.1(c)), assuming the array footprint size for 
A to be ("'1, "'2), the loop tile size should be ("'1 - 2, "'2 - 2). For array 
A;, if the footprint height F2 is greater than the distance between the 
locations of two columns in the cache, then the columns accessed within 
the tile will conflict in the cache, creating self-interference misses [3]. 
More precisely, we have the following lemma: 

Lemma 1 Given array footprint size (Fl' F2) for any Ai (1 :::; i:::; na), a 
cache of size Cs and cache line size Cb, if there exist no self-interference 
misses, then the distance between the starting cache locations of any 
two columns of Ai within Fl consecutive columns is either no smaller 
than F2 , or no greater than Cs - F2 . Conversely, there exist no self­
interference misses if the distance between the starting cache locations 
of any two columns of Ai within Fl consecutive columns is either no 
smaller than F2 + Cb - 1, or no greater than Cs - F2 - Cb + 1. 
Proof Obvious. 0 
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Given a directly-mapped cache of size C s and cache line size Cb, and 
given an array column size N, procedure EnumFPSize in Figure 3.4(a) 
enumerates all the footprint sizes (FI' F2) which incur no self-interference 
misses, according to Lemma 1. We say that a footprint size (FI' F2) of Ai 
is maximal if increasing either FI or F2 will introduce self-interference 
misses for Ai. In general, the maximal footprint size for array Ai is 
not unique. According to EnumFPSize, the maximal footprint sizes for 
all arrays are the same if they have the same array column sizes. Our 
tile-size selection scheme will enumerate all array footprint sizes which 
are free of self-interference misses until the sizes become maximal. The 
scheme estimates and compares the execution cost for different (FI' F2) 
in order to get the optimal tile size. 

Next, suppose the cache is not directly-mapped, and assume an LRU 
replacement policy. We show that the parameter C s in procedure EnumF­
PSize should not be the whole cache size. Otherwise, self-interference 
misses will occur when the execution proceeds from one tile to the next. 
For clarity, instead of arguing formally for the general cases, we illustrate 
the cases of 2-way and fully-associative caches. Figure 3.4(b) shows two 
consecutive tiles t1 and t2. Suppose C s equals the whole cache size in 
procedure EnumFPSize and suppose the footprint size of t1 is maximal. 
Tile t1 accesses the cache from the least-recently referenced data seg­
ment to the most-recently referenced data segment in the memory, in 
the order of Dl, D2, D3 and D4 which are separated by solid lines. If 
the cache associativity is Cal = 2, then D2 and D4 will map to th~ same 
cache sets. The data accessed in the blank rectangle A will replace seg­
ment D2. If the cache is fully associative, Dl will be replaced. However, 
part of the old data in segment D2 (or Dl) could have been reused by 
tile t2. One solution to avoid the replacement of useful data is to reduce 
the footprint size within t1 such that only a portion of the cache is used 
to compute the maximal footprint size in EnumFPSize. Figure 3.4(c) 
shows the case for two-way set-associative cache. In this way, the data 
accessed in Regions A and C will replace the cache segment D2 and part 
of segment Dl, whose old data are not reused by t2. The reusable data in 
D3 will be kept in the cache. Using the above idea, we let C s = eea ) -1 CSI 

al 
in procedure EnumFPSize, for 2-way and fully-associative caches. The 
cases of other associativities are more complex, and they will not be 
discussed in this paper. 

To eliminate capacity misses, the footprint size of each array Ai can 
only be (l~J, F2), a fraction of (FI' F2)' Here, we choose to partition 
columns instead of rows, in order to preserve spatial locality. Assume 

that (Bii), B~i)), 1 :::; i :::; n a , is the tile size such that the footprint 

size for array Ai within a single tile is (l ~ J, F2). For 2-way and fully-
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array footprint 

Figure 3.5. An illustration of padding to eliminate cross-interferences 

associative caches, we choose the tile size for the tiled loop as (B1' B2 ) = 

(mi1ljBii) , mi1ljB~i)). For directly-mapped caches, we choose (B1' B2 ) = 

(miniBii) - 51, miniB~i) - 52). One can prove that for directly-mapped, 
2-way and fully-associative caches, Property 1 holds under the above 
treatment. For other set-associative caches, procedure EnumFP5ize 
needs to be revised. 

5.2.2 Preserving Property 2. We apply inter-array padding 
to eliminate cross-interference misses within a tile traversal. For sim­
plicity of presentation, we assume that the array subscript patterns of 
one particular array Ak cover all the array subscript patterns for all the 
other arrays Ai, i i= k. The discussion in this section can be easily ex­
tended if such an assumption does not hold. Using inter-array padding, 
we let the starting addresses for array Ai(l ::; i ::; na) map to the same 
location in the cache as the starting address of the (l ~ J * (i - 1) )th 
column of array AI. With such padding, cross-interference misses are 
eliminated within a single tile between Ai and Aj (1::; i,j ::; na , i i= j). 

When the execution goes from one tile to the next, if the cache is 
directly-mapped, the newly accessed data for Ai will map to cache loca­
tions previously unused in the tile traversal. If the cache is not directly­
mapped, the newly accessed data for Ai will map to cache locations 
which are either previously unused or will not be referenced again within 
the current traversal. Therefore, cross-interference misses are also elimi­
nated within a tile traversal. Figure 3.5 illustrates an example for P1 = 4 
and na = 2, where the cache is directly mapped. Here, assuming the 
starting address for array A1 to be 0, the padded number of data items, 
x, between arrays A1 and A2 can be determined from 

(size(A1) + x) = (2 * N), mod Cs1 ' (3.12) 

We are ready to present our tile-size selection algorithm in the next 
section. 
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Input: Sl, S2, CSl, Cal, Cbl, C s2, C a2 , Cb2, nl, n3, n4, n5, n a , N, a (see Tables 3.2 and 3.3). 
Output: Tile size (Bl' B 2 ) and the transformed array declaration. 
Procedure: 

if (Cal = 1) then 
ComputeTileSize-2D( C.tl 
ComputeTileSize-1D( C .2) 

else 
Compute TileSize-2D( C~~~l C n ) 

ComputeTileSize-1D(Ct!:r l C. 2) 
a2 

end if 
Apply inter-array padding (see Section 5.2.2). 
Return (Bl' B 2 ). 

Procedure Compute TileSize-l D( C.) 
/* (TBl' TB2) is a temporary tile size. */ 
Select the maximum tile width I< such that the footprint of 

one tile can fit in both the TLB and the L2 cache. 
TBI t- I< - Sl, TB2 t- 1/ + S2 * (ITMAX-1) 
Compute the execution cost, TM, based on (3.10). 
if (TM < M) then Bl t- TBl , B2 t- TB2, M t- TM end if 

Procedure ComputeTileSize-2D(C.) 
/* (T B l , T B 2 ) is a temporary tile size. * / 
Mt-oo 
for F2 t- Cbl to N do 

Fl t- 1 
t t- (Fl * N) mod C. 
while (Fl ::; a or (F2 + Cbl - 1) ::; t ::; (C. - F2 - Cbl + 1)) 
do 

Convert array footprint size (FI' F2 ) to loop tile size 
(TBl,TB2) (see Section 5.2.1). 

if (Cal = 1) then 
TBI t- TBI - SI,TB2 t- TB2 - S2 

end if 
if (TBI > 0 and TB2 > 0) then 

Compute the execution cost, TM, based on (3.11). 
if(TM < M) then 

Bl t- TB l , B2 t- TB2, M t- TM 
end if 

end if 
Fl t- Fl + 1 
t t- (Fl * N) mod C. 

end while 
end for 

Figure 3.6. Tile-size selection algorithm - STS 

5.2.3 Algorithm STS. Algorithm STS in Figure 3.6 selects 
the tile size by interleaving the operations in procedure EnumFPSize 
with the applications of Formulas (3.10) and (3.11) which compute the 
execution cost. We require B2 to be no smaller than the cache line size 
Cbl. However, we do not require B2 to be a multiple of Cb1, since such a 
requirement does not have much benefit when execution proceeds from 
one tile to the next. In addition to the conditions stated in procedure 
En u mFPSize , the array footprint width F2 should be no greater than (J, 

which is the total number of array columns representable by the TLB 
minus the number of newly accessed array columns when the execution 
proceeds from one tile to the next. 
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Table 3.4. Machine parameters 

Cal Cbl Cal C a2 Cb2 C a2 Tc n Pi P2 

Ultra II 2K 2 1 256K 8 1 64 lK 6 45 
RlOK 4K 4 2 512K 16 2 64 4K 9 68 

STS makes the decision between I-D and 2-D tiling based on their 
execution cost. For I-D tiling, ComputeTileSize-1D tries to find tile 
width Bl such that Properties 1 and 2 are preserved on the L2 cache 
and that Formula (3.10) is minimized. For 2-D tiling, ComputeTileSize-
2D enumerates all tile sizes which are free of self-interference misses. 
The tile size with the lowest execution cost is selected. Between I-D and 
2-D tiling, the scheme with the lower execution cost is chosen. 

STS needs a conversion from array footprint size (Fl' F2) to loop tile 
size (Bl' B 2), as stated in Section 5.2.1. If the resulting tile width or tile 
height is non positive, I-D tiling is chosen. 

The complexity of STS is 0 (N * min( C 81, a)) = 0 (N a). (In practice, 
a is much smaller than the Ll cache size Csd 

5.3. A Running Example 

We now take SOR (Figure 3.1) as an example to show how STS works, 
assuming the following parameters: N = 1000, ITMAX = 1050, Csl = 
4096, Cbl = 4, Cal = 2, C s2 = 128 * 1024, Cb2 = 16, C a2 = 2, n = 4096 
and Tc = 48, nl = 15, n3 = 15, n4 = 20, n5 = 3, PI = 6, and P2 = 30. 
Based on the array subscripts and the loop bounds, we have Sl = S2 = 1, 
'Y = '" = 999, W = N * N = 1000000 and a = 195. 

In the following, we show the steps of STS. 

• Since C a = 2, ComputeTileSize-2D(ft) is called, and we have 
Bl = 38, B2 = 43. The execution cost for 2-D tiling is M 
4171464893 units based on Formula (3.11). 

• ComputeTileSize-1D(~) computes TBI = 63, TB2 = 2048. The 
execu tion cost for 1-D tiling is T M = 4764840588 units based on 
Formula (3.10). In this case, STS favors 2-D tiling over I-D tiling 
wi th the tile size (38, 43) . 

• No inter-array padding is applied since na = 1. 
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6. Experimental Evaluation 

We apply our tile-size selection algorithm STS to three numerical ker­
nels, SOR, Jacobi and Livermore Loop No. 18 (L118), and two SPEC 
benchmarks, tomcatv and swim. These benchmarks are chosen because 
they require skewed tiling. We use reference inputs for tomcatv and 
swim. For SOR, Jacobi and LLI8, we declare N X N double precision 
arrays, with randomly chosen N based on a random number genera­
tor [14] with the following formula 

Zn+l = (16807zn ) mod 2147483647. (3.13) 

Assuming that the array sizes under consideration range from ro to rl, 
we select 200 array sizes, an, such that 

an = ro + (zn mod (rl - ro)), 1 ::; n ::; 200. (3.14) 

We use Zl = 9 in all our experiments. Note that it would be too time­
consuming to exhaustly test all array sizes within the range in our ex­
periments. 

We run the test programs on a SUN Ultra II uniprocessor workstation 
and on one MIPS RI0K processor of an SGI Origin 2000 multiproces­
sor, with the tile sizes selected by five different algorithms, namely, STS, 
TLI [3], TSS [4], LRW [9] and DAT [13]. In this paper, we only show the 
summarized results. The raw experimental results can be found in [19]. 
In order to handle several equally-important arrays, we make an obvi­
ously necessary modification on the original TSS and LRW algorithms 
such that the value of the initial tile size will meet the working set con­
straint. We also modify the TLI algorithm such that only the cache size 
divided by the number of equally-important arrays is used to compute 
the tile sizes which are free of self-interference misses. If any algorithm 
decides to choose the whole array column as the tile height, then we let 
B2 = 'Tj + 82 * (ITMAX-l) and tile the Ji loops only (Figure 3.2(b)). 

Table 3.4 lists the machine parameters for the Ultra II and the RI0K, 
assuming the size of an array element of 8 bytes. The main memory size 
for the Ultra II is 128M bytes, and it is 16G bytes for the RI0K. To 
accommodate the competition between instructions and data in the L2 
cache, we only tries to utilize 95% of the total L2 cache capacity. We 
use the machine counters on the RI0K to measure the cache miss rate. 
Currently, we obtain the values of nl, n3, n4 and n5 by examining the 
assembly code of the original program. A backend compiler can easily 
obtain such numbers. 

On the RI0K, the untiled codes are compiled using the native compiler 
with the "-03" optimization switch set. On the RI0K, we found that 
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Table 3.5. Speedup by STS and average cache miss rates for different schemes for 
SOR 

Ultra II ORG LRW TSS TLI STS DAT 
Speedup by STS 1.10 1.06 1.34 1.03 1.00 1.10 

L1 Miss Rate 0.14 0.02 0.07 0.03 0.02 0.06 
L2 Miss Rate 0.066 0.006 0.009 0.005 0.006 0.008 

RiO/{ ORG LRW TSS TLI STS DAT 
Speedup by STS 1.26 0.99 1.06 0.98 1.00 0.97 

L1 Miss Rate 0.113 0.006 0.024 0.012 0.008 0.031 
L2 Miss Rate 0.116 0.057 0.030 0.031 0.085 0.007 

compiling the tiled code with the "-02" switch can sometimes run faster 
than that with the "-03" switch, regardless of the tile-size selection 
schemes. Therefore, we compile the tiled code with "-02" or "-03" 
depending on which produces shorter execution time. For all the tile­
size selection schemes, we switch off loop tiling for the native compiler on 
the R10K when we compile the tiled source programs (with for both 1-D 
and 2-D tiling). We switch off prefetching on the R10K when we compile 
2-D tiled source codes since prefetching may increase cross-interference 
misses for smaller tile height B2 • We also switch off common block 
reorganization since the tile size selection algorithms already take care 
of memory layout. On the Ultra II, both the untiled and the tiled codes 
are compiled using the native compiler with the "-fast -xchip=ultra2 -
xarch=v8plusa -fsimple=2" optimization switch, which is recommended 
by the vendor. 

The SOR kernel We fix ITMAX to 1050 and randomly choose 200 
array sizes ranging from 200 to 2000, i.e., (ro, rt) = (200,2000) in Equa­
tion (3.14). The skewing factors are 81 = 82 = 1. We have nl = n3 = 11, 
n4 = 9 and n5 = 3. Table 3.5 summarizes the average speedup by STS 
over other schemes, average L1 and L2 cache miss rates for SOR. The 
execution time is averaged by geometric mean, and the cache miss rates 
are averaged by arithmetic mean of cache miss rates for individual array 
Size. 

The Jacobi Kernel We fix ITMAX to 500 and randomly choose 200 
array sizes ranging from 200 to 2000. The skewing factors are 8 1 = 82 = 
1. We have nl = n3 = 17, n4 = 28 and n5 = 10. Table 3.6 shows the 
average speedup by STS, average L1 and L2 cache miss rates for Jacobi. 
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Table 3.6. Speedup by STS and average cache miss rates for different schemes for 
Jacobi 

Ultra II ORG LRW TSS TLI STS DAT 
Speedup by STS 5.40 1.39 2.17 1.28 1.00 1.10 

L1 Miss Rate 0.60 0.12 0.24 0.24 0.06 0.19 
L2 Miss Rate 0.15 0.02 0.02 0.01 0.02 0.01 

R1Ol< ORG LRW TSS TLI STS DAT 
Speedup by STS 5.46 0.98 1.21 1.15 1.00 0.97 

L1 Miss Rate 0.234 0.022 0.062 0.144 0.038 0.082 
L2 Miss Rate 0.169 0.066 0.043 0.006 0.104 0.010 

Table 3.7. Speedup by STS and average cache miss rates for different schemes for 
LL18 

Ultra II ORG LRW TSS TLI STS DAT 
Speedup by STS 1.89 2.92 2.54 1.96 1.00 2.11 

L1 Miss Rate 0.435 0.217 0.284 0.326 0.469 0.208 
L2 Miss Rate 0.112 0.037 0.056 0.019 0.018 0.021 

R1Ol< ORG LRW TSS TLI STS DAT 
Speedup by STS 1.72 1.98 1.98 1.62 1.00 1.69 

L1 Miss Rate 0.173 0.072 0.096 0.122 0.217 0.066 
L2 Miss Rate 0.128 0.049 0.075 0.010 0.005 0.026 

The LL18 Kernel LL18 has 9 arrays, and the tiled version has 11 ar­
rays after duplicating ZR and ZZ. Due to the relatively large number 
of arrays, the array sizes we used in SOR will produce extremely small 
tile sizes for all the tile-size selection schemes. Therefore, we reduce the 
array sizes and randomly choose 200 array sizes ranging from 200 to 
500. We fix ITMAX to 300. The skewing factors are 81 = 82 = 2. We 
have n1 = n3 = 75, n4 = 100 and n5 = 35. Table 3.7 shows the average 
speedup by STS, average L1 and L2 cache miss rates for LL18. 

tomcatv The program tomcatv can only be tiled with one dimen­
sion [18], hence only STS can be applied for tile-size selection. We use 
two different reference inputs from SPEC92 and SPEC95 respectively. 
To verify whether STS produces nearly the best results, we run through 
a range of tile sizes, from 2 to three times of the size selected by STS, 
for each version of tomcatv. The results chosen by STS are closer to the 
optimal solutions than to the original programs [19]. To examine how 
padding will affect the STS, we also run both versions of tomcatv with­
out padding applied. Except few cases, padded version runs significantly 
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Table 3.B. Summary of speedup of STS over other schemes 

ORG LRW TSS TLI DAT 
Ultra II 2.24 1.63 1.95 1.37 1.37 

R10K 2.28 1.24 1.36 1.22 1.17 
Both 2.26 1.42 1.63 1.29 1.27 

faster than unpadded version [19], which demonstrates the effectiveness 
of padding for STS. 

swim Similar to tomcatv, swim is tiled only with one dimension. On the 
R10K, we use three different reference inputs from SPEC92, SPEC95 and 
SPEC2000 respectively. On the Ultra II, however, because of the large 
data set size and the relative small main memory size, the SPEC2000 
version of swim cannot be tiled with a positive tile size, i.e., it cannot be 
tiled profitably. Hence, on the Ultra II, we use two different reference 
inputs from SPEC92 and SPEC95 respectively. Similar to tomcatv, we 
choose the tile sizes from 2 to three times of the size selected by STS 
for each version of swim. The results chosen by STS are closer to the 
optimal solutions than to the original programs [19]. Similar to tomcatv, 
padded version runs faster than unpadded version in most cases [19]. 

6.1. Discussion 

In summary, Table 3.8 shows the speedup by STS over all the other 
schemes for all 600 cases for SOR, Jacobi and LL18, where "Both" stands 
for both the Ultra II and the R10K. 

One interesting point is related with LRW. Considering the combi­
nation of each benchmark (SOR, Jacobi and LL18) and each machine 
(Ultra II and R10K), LRW produces equal or smaller average L1 cache 
misses in 5 out of 6 combinations compared with STS. However, this 
does not translate into large performance saving. (The worst average 
speed ratio of STS over LRW is 0.98.) We found that in general LRW 
produces smaller tile sizes than STS, which potentially introduces more 
loop overhead. For LL18, LRW has greater average L2 cache miss rates 
than STS since STS exploits locality for L2 cache in most of cases due 
to large number of arrays. 
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7. Conclusion 

In this paper, we present a memory cost model to predict the cache 
misses after skewed tiling. Further, we model the execution cost by 
considering both the cache misses and the loop overhead, based on which 
we make a decision between tiling one loop level vs. two loop levels. 
We present Algorithm STS, which selects the tile size such that the 
capacity misses and self-interference misses within a tile traversal are 
eliminated. STS uses inter-array padding to eliminate cross-interference 
misses. We also compare STS with four previous algorithms, TLI, TSS, 
LRW and DAT. Experiments show that STS achieves an average speedup 
of 1.27 to 1.63 over all the other four algorithms. We have previously 
implemented a cost model along with a number of tiling algorithms 
within a research compiler [18]. However, we are yet to implement the 
cost model presented in this paper. Ideally, our cost model should be 
incorporated in a backend compiler, which will be our future work. 

In our experiments, we found that turning on the compiler switch 
for prefetching for the tiled codes may degrade the performance. How 
to effectively combine tiling and prefetching seems an interesting future 
research topic. 
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Abstract Modern processors and compilers hide long memory latencies through 
non-blocking loads or explicit software prefetching instructions. Un­
fortunately, each mechanism has potential drawbacks. Non-blocking 
loads can significantly increase register pressure by extending the life­
times of loads. Software prefetching increases the number of memory 
instructions in the loop body. For a loop whose execution time is bound 
by the number of loads/stores that can be issued per cycle, software 
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prefetching exacerbates this problem and increases the number of idle 
computational cycles in loops. 

In this paper, we show how compiler and architecture support for 
combining a load and a prefetch into one instruction, called a pre/etch­
ing load, can give lower register pressure like software prefetching and 
lower load/store-unit requirements like non-blocking loads. On a ~et of 
106 Fortran loops we show that prefetching loads obtain a speedup of 
1.07-1.53 over using just non-blocking loads and a speedup of 1.04-1.08 
over using software prefetching. In addition, prefetching loads reduced 
floating-point register pressure by as much as a factor of 0.4 and integer 
register pressure by as much as a factor of 0.8 over non-blocking loads. 
Integer register pressure was also reduced by a factor of 0.97 over soft­
ware prefetching, while floating-point register pressure was increased by 
a factor of 1.02 versus software prefetching in the worst case. 

Keywords: Cache, Software Prefetching, Nonblocking Loads 

1. Introduction 

In modern processors, main-memory access time is at least an order 
of magnitude slower than processor speed. A small, fast cache memory 
is used to alleviate this problem. However, the cache cannot eliminate 
all accesses to main memory and programs incur a significant penalty 
in performance when a miss in the cache occurs. To help tolerate cache 
miss latency, system designers have developed non-blocking loads and 
software prefetching instructions. Non-blocking loads allow cache ac­
cesses to continue when misses occur [9], allowing useful work to hide 
the latency of a cache miss. Software prefetching instructions bring a 
memory location into the cache in advance of when a load is issued to put 
the value in a register [12, 21]. Either of these latency hiding techniques 
can be valuable to the performance of memory systems. 

Both of the above latency hiding techniques have disadvantages. Non­
bl~cking loads can increase register pressure in loops significantly by 
lengthening the lifetimes of loads that are cache misses. Since advanced 
scheduling techniques such as software pipelining [1] already put a large 
demand on the register file, the additional pressure due to longer life­
times can have a detrimental effect on performance. While software 
prefetching instructions do not increase the register pressure like non­
blocking loads, they can cause degradation in loops whose performance 
is limited by the number of load/store instructions that can be issued per 
cycle. The additional memory instructions can increase the number of 
idle computational cycles if there is not a balance between computation 
and memory instructions. 
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In this paper, we describe how compilers and architecture can work 
together to implement prefetching loads, a single instruction that per­
forms both a load and prefetch, and detect opportunities for using them 
effectively. We will show that prefetching loads both enhance the per­
formance and reduce the register pressure of non-blocking load schemes. 
In addition, we will show that prefetching loads do not require the ex­
tra memory instructions required by software prefetching, giving better 
performance. 

This paper begins in Section 2 with background material on memory­
reuse analysis and an overview of software pipelining. Then, we give 
a review of previous work on latency hiding in Section 3. Section 4 
compares the differences between non-blocking loads, software prefetch­
ing and prefetching loads. Section 5 presents the compiler and hardware 
support necessary for prefetching loads. Finally, Section 6 details the ex­
perimental evaluation of our proposed technique and Section 7 presents 
our conclusions. 

2. Background 

In order to utilize prefetching loads, the compiler must perform data­
reuse analysis to determine if a prefetching load is profitable and perform 
software pipelining to schedule the prefetching load. In this section, we 
present the data-reuse analysis and software pipelining methods that we 
use in our compilation system. 

2.1. Data-Reuse Analysis 

Non-blocking loads, software prefetches and prefetching loads all re­
quire the compiler to determine which loads and stores will benefit from 
latency hiding because they are cache misses. Basically the compiler 
must determine the data reuse properties of each load in a loop. 

The two sources of data reuse are temporal reuse, multiple accesses to 
the same memory location, and spatial reuse, accesses to nearby memory 
locations that share a cache line or a block of memory at some level of the 
memory hierarchy. Temporal and spatial reuse may result from self-reuse 
from a single array reference or group-reuse from multiple references. 1 

In this paper we use the method developed by Wolf and Lam [27] to 
determine the reuse properties of loads. An overview of their method 
follows. 

A loop nest of depth n corresponds to a finite convex polyhedron zn, 
called an iteration space, bounded by the loop bounds. Each iteration 

1 Without loss of generality, we assume Fortran's column-major storage. 
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in the loop corresponds to a node in the polyhedron, and is identified by 
its index vector x ~ (Xl, X2,' •• ,xn ), where Xi is the loop index of the 
ith loop in the nest, counting from the outermost to the innermost. The 
iterations that can exploit reuse are called the localized iteration space, 
L. The localized iteration space can be characterized as a localized 
vector space if the loop bounds are abstracted away. 

For example, in the following piece of code, if L = span{(l, I)} , then 
data reuse for both A(I) and A(J) is exploited. 

DO 1= 1, N 
DO J = 1, N 

A(I) = A(J) + 2 
ENDDO 

ENDDO 

In Wolf and Lam's model, data reuse can only exist between uniformly 
generated references as defined below [18]. 

Definition 5 Let n be the depth of a loop nest, and d be the dimensions 
of an array A. Two references A(J(x)) and A(g(x)), where f and g are 
indexing functions zn -+ Zd, are uniformly generated if 

f(fi) = Hfi + cf and g(fi) = Hfi + c9 

where H is a linear transformation and c.r and Cg are constant vectors. 

For example, in the following loop, 

DO 1= 1, N 
DO J = 1, N 

A(I,J) = A(I,J-l) + A(I+l,J) 
ENDDO 

ENDDO 

the references to A(I,J), A(I,J-l) and A(I+l,J) can be written as 

respectively. References in a loop nest are partitioned into different sets, 
each of which operates on the same array and has the same H. These 
sets are called uniformly generated sets (UGSs). 

A reference is said to have self-temporal reuse if :3f' E L such that 
H f' = O. A reference has self-spatial reuse if :3f' E L such that H sf' = 0, 
where Hs is if with the first row set to O. Two distinct references in a 
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UGS, A(Hx + C1) and A(Hx + C2) have group-temporal reuse if:3f' E L 
such that H f' = C1 - is. And finally, two references have group-spatial 
reuse if :3f' E L such that Hsr = C1,S - is,s. 

References can be partitioned into groups that have group-temporal 
reuse called group-temporal sets (GTS) and into groups that have group­
spatial reuse called group-spatial sets (GSS), based upon solving the 
above equations. Since group-temporal reuse is a special case of group­
spatial reuse, a GSS can contain many GTSs. The leader of a GSS (GTS) 
is the first reference to access the cache line (memory location) that is 
accessed by every array reference in the set. The leading load is the first 
load to access a particular cache line (memory location). Assuming that 
L = span{(O, I)}, in the previous example all references belong to the 
same GSS, A(I,J) and A(I,J-1) belong to one GTS, and A(I+1,J) 
belongs to another GTS. The leader of the GSS is A (I+1, J). 

References that have self-temporal, group-temporal or group-spatial 
reuse within the localized vector space are said to be cache hits. Ref­
erences that have only self-spatial reuse, are said to be cache misses 
once every l accesses, where l is the cache-line length, and cache hits 
otherwise. References that have no reuse are cache misses. 

2.2. Software Pipelining 

While local and global instruction scheduling can together exploit a 
large amount of parallelism for non-loop code, exploiting instruction­
level parallelism within loops requires software pipelining. Software 
pipelining can generate efficient schedules for loops by overlapping the 
execution of operations from different iterations of the loop. This over­
lapping of operations is analogous to hardware pipelining where speed-up 
is achieved by overlapping execution of different operations. 

Allan et al. [1] provide a good summary of current software pipelin­
ing methods, dividing software pipelining techniques into two general 
categories called kernel recognition methods [2, 3, 4] and modulo sched­
uling methods [19, 28, 23]. The software pipelining used in this work 
is based upon modulo scheduling. Modulo scheduling selects a schedule 
for one iteration of the loop such that, when that schedule is repeated, 
no resource or dependence constraints are violated. The number of cy­
cles between the instantiation of successive loop iterations is called the 
initial interval (II). There are two constraints on the II of a loop. The 
first constraint, called the ResII, is the maximum number of instruc­
tions in a loop requiring a specific functional-unit resource. The second 
constraint, called the Reel!, is found by examining the length of recur­
rences in the data dependence graph (DDG) for a loop. The minimum 
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initiation interval (MinI!) is the maximum of the ResII and Reel!. In 
iterative modulo scheduling [23], first a schedule of MinI! instructions 
is attempted. If a schedule is found that does not violate any resource 
or dependence constraints, modulo scheduling has achieved a minimum 
schedule. If not, scheduling is attempted with MinI! + 1 instructions, 
and then MinI!+2, ... , continuing up to the worst case which is the I!is 
the number of instructions required for local scheduling. The first value 
of I! to produce a "legal" schedule of the DDG becomes the actual initia­
tion interval. After a schedule for the loop itself has been found, code to 
set up the software pipeline (prelude) and drain the pipeline (postlude) 
are added. Rau [23] provides a detailed discussion of an implementation 
of modulo scheduling. 

2.3. Increased Register Requirements 

Software pipelining can, by exploiting inter-iteration concurrency, dra­
matically reduce the execution time required for a loop. Such overlap­
ping of loop iterations also leads to additional register requirements, 
however, because the definition and use of a value may span multiple 
loop iterations. A register may be required for each loop iteration be­
tween the definition and use of a value. For example, if a definition and 
use of a value occurs on the same iteration in a loop one register will 
suffice for a value. However, if the definition and use of a value are sepa­
rated by a number of iterations in order to obtain excellent parallelism, 
a register may be required for every iteration between the definition and 
use. 

3. Previous Work 

Callahan, et al. [12], describe a simple algorithm for insertion of 
software prefetches. In one loop iteration, all data needed on the next 
iteration is prefetched. This simple strategy results in a large percentage 
of unnecessary prefetches. Some of this overhead can be eliminated by 
using the overflow iteration - the number of loop iterations it takes to 
fill up the cache - to remove unnecessary prefetches. Any prefetch for an 
array reference that reuses a value before the overflow iteration occurs 
is eliminated. 

Mowry, et al. [21], present an algorithm that outperforms the method 
of Callahan, et al., by selectively prefetching only those items that are 
determined to be cache misses by memory reuse analysis. The algorithm 
also only issues a prefetch for self-spatial references once for each cache 
line. Additionally, Mowry bases the prefetching distance on the cycle 
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time to memory and the II of the loop rather than just prefetching data 
for the next loop iteration. 

Ding, et al. [17], report on experiments that show non blocking loads 
are an effective way to hide memory latency. They present a simple 
algorithm that assumes that any reference that has any kind of reuse 
is always a cache hit. Their study shows that using reuse analysis to 
determine load latencies is superior to assuming that all loads are cache 
hits or assuming all loads are cache misses. 

Sanchez and Gonzalez [26] describe a method for scheduling non­
blocking loads called Cache Sensitive Modulo Scheduling (CSMS). Their 
method uses cache reuse analysis (including analysis of cache interfer­
ences) to determine whether array references will be cache hits or cache 
misses. If a load is determined to be a cache miss, but register pres­
sure is estimated to be too high or the load increases the Reel! of the 
loop, the load is scheduled as a cache hit. CSMS is shown to give better 
performance than the algorithm implemented by Ding, et al. 

Sanchez and Gonzalez also compare CSMS to software prefetching. 
However, they do not use full selective prefetching. For array references 
with self-spatial reuse they issue one prefetch per loop iteration or no 
prefetches, neither of which is as effective as Mowry's technique. Since 
prefetches for references with self-spatial reuse are only needed once per 
cache line, not using full selective prefetching can inhibit the performance 
of software prefetching. More prefetches are issued than necessary if 
references with self-spatial reuse are prefetches. Or, fewer prefetches 
than necessary are issued if no prefetches are issued for references with 
self-spatial reuse. 

Carr and Sweany [15] introduce prefetching loads that only prefetch 
the next cache line, rather than using a prefetch offset. Their method was 
limited because prefetching one cache line ahead does not allow enough 
time to hide miss latency. We improve on this by using a prefetch offset 
to hide the full miss latency of a load. 

4. A Motivating Example for Prefetching Loads 

As a comparison of non-blocking loads, software prefetching and pre­
fetching loads, consider the following loop. 

DO J = 1, N 
DO I = 1, N 

ENDDO 
ENDDO 

= A(I,J) + B(J,I) 
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Reuse analysis would determine that A(I ,J) is a cache miss once out 
of every I references, where I is the cache-line size. If we issue a non­
blocking load using the miss latency, there is needless increase in register 
pressure due to longer overlapped lifetimes for every I - lout of I ref­
erences. Note that it is difficult, in general, to determine which of the I 
references will incur the miss penalty because the alignment of A (I, J) 
within a cache line may be difficult, or impossible to determine at com­
pile time (e.g., loops in library code).2 If we assume that A(I,J) is 
always a cache hit, we keep the register pressure lower, but we pay the 
cache miss penalty once out of every I references. Neither assumption 
is adequate for loads with self-spatial reuse. Finally, the reference to 
B(J ,I) would be scheduled as a cache miss, potentially increasing reg­
ister pressure significantly. 

Mowry, et al., would insert an explicit software prefetching instruction 
once every I iterations of the loop for A (I, J) and an explicit prefetch 
instruction for B (J, I) every iteration. Assuming that a cache line could 
hold four elements of A(I,J), Mowry, et al., would unroll the loop by 
four so that there would be only one prefetch of A (I, J) for each cache 
line. The resulting loop would have 13 memory operations per 4 floating 
point operations - worse than the two memory operations per floating 
point operations in the original loop (Note that loop with prefetching 
still has better performance because of cache performance improvement). 
Since modern architectures are often able to issue the same number of 
floating-point instructions and memory instructions in parallel, the soft­
ware prefetches would exacerbate the already high demand for issuing 
memory instructions and leave more computational resources idle than 
if we could prefetch without additional instructions. So, while the la­
tency could be hidden for all references, the loop would require a longer 
schedule than if no extra memory instructions were issued. 

Our enhancement to latency hiding techniques is to introduce a new 
instruction, called a prefetching load, that is intended for references like 
A (I , J) and B (J , I) in the exam pIe. The instruction is like a normal load 
except that a prefetching distance is encoded in the offset in register + 
offset addressing mode or in a special register in register + register ad­
dressing mode.3 The semantics of a prefetching load is to load the data 

20ur experimentation with scheduling only the first load out of I successive load as a cache 
miss has shown that only slightly better performance is achieved over assuming that all 
self-spatial loads are cache hits. 
3Note that this does not eliminate register + offset mode for references that use prefetching 
loads. The prefetching load address can be used as the base address for other references to 
the same cache-line. The reference that uses the prefetching load will be the first reference 
to a particular cache line, as discussed in the next section. 
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at the address specified in the address register and prefetch the data 
at the address in the address register plus the offset (or register). If 
the prefetching distance is large enough, the part of the instruction that 
actually loads a value into a register will be a cache hit almost every 
time. 

Prefetching loads can be seen as an enhancement to any non-blocking 
load scheme since using prefetching loads removes the need to extend reg­
ister lifetimes like non-blocking loads. Additionally, there is no increase 
in the number of memory instructions issued like software prefetching. 
Potentially, prefetching loads can get the best of both non-blocking loads 
and software prefetching. In the example above, a prefetching load can 
be issued once every I iterations for A(I,J), using loop unrolling, and 
once every iteration for 8 (J ,I). This would result in keeping the lower 
register pressure because all loads, and prefetching loads, can be sched­
uled using the cache hit latency. Also, this would keep the ratio of mem­
ory operations to floating-point operations at two to one, as opposed to 
the thirteen to four in the loop with software prefetching. 

5. Prefetching Loads 

In this section, we show how to determine which memory references 
can benefit from prefetching loads. Then, we describe our cache design. 

5.1. Compiler Support for Identifying 
Candidates for Prefetching Loads 

For each GSS that has a constant stride between references, we can 
issue a prefetching load for the leading load in the GSS. There are two 
types of GSSs that meet this requirement: (1) a GSS that has self­
spatial reuse, or (2) a GSS that has no self reuse, but has the inner­
loop induction variable appearing in only one subscript. In case (1), 
the prefetching load is once every I loop iterations. In case (2), the 
prefetching load is issued once per loop iteration. If the leading load 
of a GSS is removed by scalar replacement [10, 11], then no prefetching 
load is issued for that GSS. 

As an example, consider the following loop. 

DO J = 1, N 
DO I = 1, N 

A(I,J) = 8(I,J) + 8(I-2,J) + 

e(J,I) + e(J,I-1) 
ENDDO 

ENDDO 
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In this loop, both B (I, J) and C(J, I) would be loaded using a prefetch­
ing load. Since we need only issue a prefetching load once out of every 
I references for B (I, J), we unroll the loop by a factor of I and issue the 
prefetching load for just the original reference. 

The prefetch distance is determined by calculating the number of loop 
iterations that are needed to hide the memory latency. For a software 
pipelined loop, this is4 

flatencyl 
II X data size 

Unfortunately, we cannot be assured of the alignment of a memory ref­
erence within the cache line. The alignment may vary on different ex­
ecutions of the loop and invocations of the containing function, or the 
alignment may not be known at compile time due to separate compila­
tion. This makes it quite difficult to determine which of the I successive 
references will be hits and which will be misses. For references with 
self-spatial reuse this can have a significant effect on performance. If the 
address being prefetched is not aligned on a cache-line boundary, the 
prefetch will be less effective since a cache miss will still be incurred for 
a prefetch that is still in flight. 

A(I+4,J) 

cache-line boundary 

Figure 4.1. Alignment within a Cache Line 

Consider prefetching A(I, J) from our previous example as shown in 
Figure 4.1. If we assume that a cache line contains four elements of A, 
it is possible for those four elements to be contained in two cache lines 
as shown in the shaded area. Thus, a miss to a line whose prefetch has 
not finished will occur once out of every four references. 

To handle this case, we will set the prefetch distance to be one addi­
tional cache line ahead of what is computed above, e.g., the line contain­
ing A (I +4, J). If we prefetch the line with A (I +4, J) enough in advance, 

4We assume that the stride of self-spatial references is one. This formula can easily be 
adapted to the case where the stride is greater than one 
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when A (I, J) is referenced both cache lines in the figure will be present 
in the cache. Note that the line containing A (I, J) would have been 
prefetched by an earlier iteration of the loop. 

5.2. Cache Design 

A prefetching load instruction specifies two memory operations, con­
sisting of the actual load and the prefetching part. In order to handle 
both parts concurrently, we use a standard two-way interleaved cache 
to support up to two simultaneous accesses to the cache - one to each 
module. The MIPS RIOOOO processor employs such a cache with two 
banks [20]. The cost of interleaving the cache is the introduction of a 
multiplexer between the cache and the CPU (Figure 4.2). 

Cache Cache 
BankO Bank 1 

Lower Layers 
(L2IMemory) 

Figure 4.2. Interleaved Cache 

In our design, a prefetching load will only proceed if both modules 
are available. If either cache module is not available, the instruction 
delays for one cycle and then tries to access both modules again on the 
next cycle. This continues until both modules can be accessed by the 
prefetching load. Note that if the prefetch address and the load address 
access the same cache module, the compiler will increase the prefetch 
offset by I so that each cache lookup is in a different module. As a 
result, no delays are encountered because of bank conflicts of the two 
memory access components of the prefetching load instruction. 

An alternative design to replicating the cache port is to allow the 
load portion of a prefetching load instruction to continue as if it is a 
regular load instruction and let the prefetching portion take over the 
cache port in a separate pipeline stage. In such a design, prefetching 
loads would keep a given cache port for two cycles as opposed to a 
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single cycle utilization for cache hits. Since few prefetching loads are 
introduced compared to the total number of loads issued, this should 
not severely effect the performance of regular load instructions. This 
alternative approach has not been fully explored yet and deserves further 
study. 

6. Experiment 

We have implemented non-blocking loads, software prefetching and 
prefetching loads in our experimental software systems and performed 
an experiment on 106 loops from the SPEC95 benchmark suite and 
common kernels. Table 4.1 shows the benchmarks from which the loops 
come. Memoria, a source-to-source Fortran transformer based upon the 
D System infrastructure [5], performs the memory reuse analysis and de­
termines which loads need latency hiding. This information is passed on 
to Rocket [25] via optimized intermediate code [8]. Rocket then software 
pipelines the code using appropriate reuse-based memory latencies. 

Benchmark 

lO1.tomcatv 
102.swim 
103.su2cor 
l04.hydro2d 
llO.applu 
125.turb3d 
141.apsi 
kernels 

Table 4.1. Benchmark Loops 

# of Loops 

2 
3 

22 
38 
19 

7 
3 

11 

Our target architecture for this experiment is a superscalar machine 
based upon the Unlimited Resource Machine (URM) [22] and has two 
integer functional units, each with a memory port, and two floating-point 
functional units. The architecture requires 3 cycles for integer operations 
and 3 cycles for floating-point operations. The cache for all experiments 
is as discussed in Section 5.2. We use 16K, 32K, and 64K direct-mapped 
and two-way set associative caches, each with a 32-byte line size. We 
use main memory cycle times of 25 and 75 cycles. There is a miss buffer 
with 16 entries. The architecture assumes that all branches will be taken. 
Finally, there are 128 integer and 128 floating-point registers. Since our 
software pipelining implementation does not allow register spilling, a 
large register set is needed to support scheduling of non-blocking loads. 
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We have implemented 4 different latency hiding schemes in our soft­
ware system. Each method uses memory reuse analysis as described in 
Section 2.1 to determine which memory references are cache hits and 
which are cache misses. The first scheme (NBLH) uses only a non­
blocking load to hide latency and assumes that all array references hav­
ing any of self-temporal, self-spatial, group-temporal or group-spatial 
reuse are always cache hits. All other array references are assumed to 
be cache misses. The second scheme (NBLM) is the same as the first 
scheme, except that array references that only have self-spatial reuse are 
assumed to be always a miss. NBLH gives lower register pressure at 
the cost of performance. NBLM gives better performance at the cost of 
register pressure. 

We have not implemented CSMS for this experiment. The main ad­
vantage of CSMS over the simpler methods is its handling of cache misses 
on recurrences. Prefetching loads could be used as an extension to CSMS 
also, where we'd expect to see improvements when self-spatial reuse is 
dominant. 

The third scheme tested (Pf) uses software prefetching to hide latency. 
In this scheme we use full selective prefetching as done by Mowry [21]. 
Finally, the fourth scheme (Pfld) used for latency hiding is prefetching 
loads. If an array reference is a cache miss, but is not amenable to 
prefetching loads (i.e., there is not a constant stride between memory 
accesses), we issue a non-blocking load using the cache miss latency. 

To generate code, we first apply loop unrolling to loops that have 
array references with only self-spatial reuse. We unroll the loop by the 
number of array values that fit in a cache line. This allows us to use se­
lective prefetching (and prefetching loads) on references with self-spatial 
reuse. We perform the unrolling for each latency-hiding scheme so that 
they each operate on the same code. After unrolling, we perform scalar 
replacement [13] and then perform memory reuse analysis on the re­
sulting code. We also use array padding for arrays whose dimension 
sizes cause self interference [24]. The scalar optimizations that we use 
are constant propagation [29], global value numbering [7], partial redun­
dancy elimination [6], operator strength reduction [16] and dead code 
elimination. We also generate code using register-pIus-offset addressing 
mode to reduce the integer register pressure and address arithmetic. It 
is important to note that using register-pIus-offset addressing mode is 
important to the performance of software prefetching. Previous work 
[14] has shown that the performance of software prefetching is degraded 
by approximately 20% if proper address arithmetic is not generated. Af­
ter the code has been optimized, it is then software pipelined using our 
implementation of Rau's iterative modulo scheduling [23]. 
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6.1. Initiation Interval 

Table 4.2 shows the geometric mean increase in II for NBLH, NBLM 
and Pf versus prefetching loads. As predicted, software prefetching has 
the highest average II because of the additional memory operations. 
Since many loops are bound by memory accesses, adding additional 
memory operations increases the ResII and thus, the II. Prefetching 
loads achieved a slightly lower II than both NBLH and NBLM. This is 
likely due to the change in latencies for some memory operations. 

Memory Latency 
Method 25 cycles 75 cycles 

NBLH 1.01 1.02 
NBLM 1.01 1.02 
Pf 1.08 1.08 

Table 4.2. Geometric Mean Change in II vs. Prefetching Loads 

6.2. Performance 

Tables 4.3, 4.4 and 4.5 report the geometric mean speedup of prefetch­
ing loads over each of the other latency hiding techniques. As expected 
NBLH performs the worst of the four techniques. Prefetching loads have 
a geometric mean speedup of 1.24-1.53 over NBLH. Pfld outperforms 
NBLM by 1.07-1.3. 

Direct-Mapped Cache 2-way Set Associative Cache 
Method 25 cycles 75 cycles 25 cycles 75 cycles 

NBLH 1.24 1.50 1.24 1.51 
NBLM 1.07 1.28 1.08 1.29 
Pf 1.04 1.07 1.04 1.06 

Table 4.3. Geometric Mean Speedup of Prefetching Loads - 16K Cache 

Pfld outperforms software prefetching by a geometric mean speedup 
of 1.04-1.08. The performance improvement for Pfld is due to the larger 
achieved II for Pf. Pf had a geometric mean increase in instructions 
executed of a factor of 1.07 at 25 cycles and 1.10 at 75-cycles. The 
reason for the difference is the change in software pipelining overhead. 

In our test cases, Pfld had the best performance on 46% of the loops 
and tied for the best performance with Pf on 38% of the loops. Pf had 
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Direct-Mapped Cache 2-way Set Associative Cache 
Method 25 cycles 75 cycles 25 cycles 75 cycles 

NBLH 1.24 1.51 1.25 1.50 
NBLM 1.09 1.29 1.09 1.29 
Pf 1.04 1.07 1.05 1.06 

Table 4.4. Geometric Mean Speedup of Prefetching Loads - 32K Cache 

Method 

NBLH 
NBLM 
Pf 

Direct-Mapped Cache 
25 cycles 75 cycles 

1.24 
1.09 
1.05 

1.51 
1.29 
1.08 

2-way Set Associative Cache 
25 cycles 75 cycles 

1.25 
1.09 
1.05 

1.53 
1.30 
1.06 

Table 4.5. Geometric Mean Speedup of Prefetching Loads - 64K Cache 

the best performance on 10% of the loops and one of the non-blocking 
load schemes performed best on 6% of the loops. Most of the cases where 
prefetching performed best, it was by a factor of less that 1.02. Some of 
theses cases can be attributed to higher loop overhead due to differing 
unroll amounts. In the cases where non-blocking loads performed best, 
either the loop had too few iterations to benefit from prefetching or there 
was additional cache interference caused by aggressive prefetching. 

6.3. Register Pressure 

Table 4.6 shows the geometric mean increase in register pressure ver­
sus Pfld. Pfld not only provided better performance than NBLH, NBLM 
and Pf, but it also required fewer registers. NBLH required a factor of 
1.01 more integer registers and a factor of 1.03-1.05 more floating-point 
registers. NBLM required a factor of 1.10-1.9 more integer registers and 
a factor of 1.26-2.51 more floating-point registers. 

Finally, the register pressure for Pf and Pfld was very close to the 
same. Pfld had a small decrease in integer register pressure over Pf and 
a slight increase in floating-point register pressure. This is likely due to 
the variance in the code generated due to different IIs being used. 
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Integer Floating Point 
Method 25 cycles 75 cycles 25 cycles 75 cycles 

NBLH 
NBLM 
Pf 

1.01 
1.10 
1.03 

1.01 
1.26 
1.03 

1.03 
1.9 

0.98 

1.05 
2.51 
1.02 

Table 4.6. Geometric Mean Increase in Register Pressure vs. Prefetching Loads 

7. Conclusion 

In this paper, we have shown that combining loads and prefetches into 
one instruction gives better results than non-blocking loads and explicit 
software prefetches alone. Prefetching loads eliminate the need to extend 
register lifetimes by scheduling some references as cache misses without 
increasing the resource requirements of a loop as done with software 
prefetching. In this way, prefetching loads can get the best features of 
both non-blocking loads and software prefetching. 

Our experiments show a geometric mean speedup of 1.07-1.53 with 
prefetching loads over using non-blocking loads and a speedup of 1.04-
1.08 over software prefetching. Just as importantly, we observed a geo­
metric mean reduction in floating-point register pressure by as much as 
a factor of 0.4 and a reduction in integer register pressure by as much as 
a factor of 0.8 versus non-blocking loads. Prefetching loads used a factor 
of 0.97 fewer integer registers than software prefetching and a factor of 
1.02 more floating-point registers in the worst case. 

In the future, we will investigate alternate cache designs and other 
structures to support prefetching loads. The primary goal will be to 
define a structure that effectively supports that access patterns of pre­
fetching loads. 

Given that memory latencies are increasing and that aggressive sched­
uling techniques such as software pipelining are necessary to get good 
performance on modern architectures, we need better methods to re­
duce the negative effects of long latencies. The use of prefetching loads 
as proposed in this paper is a promising step in alleviating the effects of 
long latencies for scientific program loops. 
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Abstract In Java, an exception thrown in a try block can be handled in one of 
catch blocks given by the programmer. On exception, local variables 
must be preserved to be usable in the catch block, while operand stack is 
flushed. This error handling mechanism raises an interesting challenge, 
called local variable consistency problem, in implementing register allo­
cation during JIT compilation. Because the register allocation for local 
variables should be consistent between a possibly exception generatable 
instruction (PEl) in a try block and catch blocks. 

In the viewpoint of register allocation, there are two approaches to 
solve the problem introduced in the literature in JIT compilation tech­
niques. One is to allocate a local variable to a fixed location, which leads 
to simple implementation with little memory overhead. The other is to 
allocate a local variable to variable locations in a flexible way for bet­
ter performance, while sacrificing more memory to store local variable 
mapping information at each PEL 

In this paper, we introduce another solution, called partially fixed 
register allocation, to the problem. The register allocator allocates a 
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local variable to a fixed location only in try blocks, with a flexible 
allocation in other parts of a method. 

Experiments on the ARM platform with SPECjvm98 benchmarks 
reveal that our approach requires almost the same memory as the pre­
vious fixing register allocation with little performance degradation com­
pared to the flexible register allocation. We expect that this approach 
illuminates a good engineering solution for JIT compilers in embedded 
systems with limited memory. 

Keywords: Exception handling, Register allocation, Just-in-time compilation, Em­
bedded System. 

1. Introduction 

Recently, Java system becomes a promlsmg execution environment 
for embedded systems as well as desktop and server systems. One of 
the reasons for its success is robustness, which can be achieved through 
exception handling, a language feature supported by Java. 

Unlike traditional programming languages such as C, Java makes it 
possible to cope with unexpected errors in a clean and safe way at run­
time by using try/catch/finally blocks, program constructs for exception 
handling. An exception thrown in a try block can be handled in one of 
catch blocks associated with the try block. After this, codes specified in 
a finally block will be executed regardless of generation of the exception. 

However, this useful language feature raises an interesting issue, called 
local variable consistency problem, in the design of a J IT compiler, a 
performance-delivering JVM component. According to the Java VM 
specification [10], local variables defined in the normal flow of a method 
can be used in catch blocks. Thus, register allocation for local variables 
must be consistent between a try block and catch blocks associated with 
the block. 

An interpreter usually uses a predetermined memory location for a 
local variable, so that the allocation consistency requirement is satisfied 
without any efforts. Whereas, an optimizing JIT compiler, which may 
allocate local variables to different memory locations or registers, must 
be aware of this consistency requirement. The register allocation results 
for local variables at all possible exception generatable instructions(PEI) 
[8] in a try block should be propagated to associated catch blocks for 
register allocation for the associated catch blocks. 

As far as we know, there are two approaches to deal with the consis­
tency issue in existing JIT compilers. One is to allocate a local variable 
to a predetermined location.[6, 7, 9] Since local variables are allocated 
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to fixed locations, the allocation becomes consistent between a try block 
and the associated catch blocks like the case of an interpreter. This 
approach makes the implementation of register allocation simple, while 
the fixed allocation for local variables may lead to poor-quality code. 

The other is to allocate local variables flexibly as normal, ignoring 
the existence of catch blocks.[4] The consistency can be accomplished by 
keeping the register allocation result for local variables at every PEl in a 
try block. The JIT compiler can use the allocation map for translation 
of catch blocks.1 This allocation flexibility gives better-quality code, 
with sacrificing memory for storing allocation results. And this memory 
overhead can be a problem in embedded systems. 

In this paper, we introduce a new efficient approach for the local 
variable consistency problem, a reasonable trade-off between memory 
overhead and performance, which is attractive to embedded systems. 
Like the first approach above, our approach allocates local variables to 
fixed locations. However, we fix local variables only in try blocks and 
perform an aggressive register allocation for other normal regions and 
methods without catch blocks. To fix a local variable in a try block, 
the allocator makes a local variable not to be coalesced with other local 
variables, while it does not block a local variable to be coalesced with 
other non-local variables. So we can expect better code than that of 
the first approach. And because of the same local variable map at all 
PEls in a try block, no additional memory is required to remember local 
variable map. Our experiment reveals that the performance degradation 
of new approach is acceptable for embedded system when we compare 
it with flexible allocation approach. 

The rest of this paper is organized as follows. Section 2 reviews Java 
exception mechanism and the local variable consistency problem. We 
describe how to fix local variable map in our register allocation algorithm 
in Section 3. Section 4 shows experimental results. And the summary 
of this paper appears in Section 5. 

2. Java exception and local variable consistency 
problem 

Java uses exceptions to provide elegant error handling capabilities 
during program execution.[5] A Java exception can be generated by a 
JVM when a runtime error such as OutOfMemoryError occurs, or thrown 
through an explicit throw statement by the Java program. A program-

lTranslation of catch blocks can be delayed to the time they are actually used to handle a 
thrown exception as in LaTTe[?]. 
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mer can mark an exception-prone code segment as a try block, and 
provide several catch blocks in order to handle exceptions raised in the 
try block. 

When an exception occurs, program control is transfered from the 
exception point in a try block to one of the catch blocks associated 
with it. If there is no catch block to handle the exception in the method 
where the exception is thrown, the method is terminated abnormally and 
the JVM searches backward through the method call stack to the find a 
catch block that can handle the exception.[lO] 

According to the JVM specification, the JVM should recover program 
context, specifically local variables, at the exception point when trans­
ferring control to a catch block. Instead, the operand stack is flushed 
and a reference to the exception is pushed onto the stack. In more detail, 
if the catch block is found in the method where the exception has been 
raised, the JVM should recover local variables at the exception point. 
If the catch block is found in another method which is on the call chain 
to the method where exception raised, the JVM should recover local 
variables at the call instruction to the call chain. 

An interpreter usually uses a fixed memory location for a local vari­
able, which means that the local variable map is always identical at every 
PEI.[9, 2] Therefore, the local variable recovery is simple. In contrast, a 
JIT compiler may allocate various memory locations, registers or stack 
memory, to a local variable at different program points. This allocation 
flexibility raises an issue, called local variable consistency problem, to 
the JIT compiler. For correct local variable recovery, the JIT compiler 
has to either perform register allocation consistent between an exception 
point and the catch block handling the exception or provide allocation 
information to the JVM for bookkeeping. This problem requests the JIT 
compiler a carefully treatment for each PEl during register allocation. 

From the literature on the Java JIT compilation, we found that solu­
tions to the local variable consistency problem can be classified into two 
categories in the viewpoint of register allocation at PEls2 ; 

• to allocate a predetermined location, i.e., a fixed register or a fixed 
stack area, to a local variable, or 

• to perform a flexible register allocation for local variables without 
considering exception points. 

2There are only a few papers which explicitly take the problem into consideration when 
introducing their register allocation mechanism. So this categorization is based on our own 
interpretation of the techniques. 
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void foo(int a,int b) void foo(int a.int b) void foo(int a.int b) 

{ { { 

intc =a; r3 =r1; map:(a.rI)(b,r2){c,r3) Ilint c = a; copy coalesced map:(a,rI)(b,r2)(c,rl) 

c=a+c; r3 =rl + r3; map:(a.rl)(b.r2)(c,r3) r3 = rl +rl; map:(a,rl)(b,r2)(c,r3) 

try{ try { try{ 

b=a; r2 =rl; map:(a,rl)(b,r2)(c,r3) lib = a; copy coalesced map:(a,rl)(b.rl)(c,r3) 
.. , .. , , .. 

PEl PEl map:(a,rl)(b,rl)(c,r3) PEl map:(a,rl)(b,rI)(c,r3) 

... ... .. , 
b=b+a; r2 = r2 + rl; map:(a,rl)(b,r2)(c,r3) r2=rl +rl; map:(a,rl)(b,r2)(c,r3) 

... ... ... 
PEl PEl map:(a,rl)(b,r2)(c,r3) PEl map:(a,rl)(b,rl)(c,r3) 

... ... ... 
Icatch(Exceplion e){ Jcatch(Exception e) I Jcatch(Exception e)1 

c=a+b; r3=rl +r2; map:(a,rl)(b,rl)(c,r3) r3=rl+r?; map:(a,rI)(b,r?)(c,r3) 

a) Java source b) Fixed allocation c) Flexible allocation 

Figure 5.1. Register allocation examples of fixed allocation and flexible allocation 

In the first approach, the JIT compiler allocates a fixed memory lo­
cation to a local variable. It reserves several registers and stack area for 
local variables and fixes the allocation for local variables in the whole 
method. For catch blocks, the register allocator uses the fixed local vari­
able map. Consequently, the local variable allocation becomes consistent 
between a try block and catch blocks, allowing that program control can 
be transferred easily. This approach makes it easy to implement the 
JIT compilation in presence of exceptions, but taints code quality in a 
normal flow resulting in peformace degradation. Local variables cannot 
be coalesced with one another. 

The second approach is to allocate local variables flexibly at PEls. 
The JIT compiler ignores the presence of exception for allocation for a 
try block. Since local variable maps can be different between PEls, they 
must be remembered at all PEls for correct register allocation for catch 
blocks.3 LaTTe[4] deploys this approach. It generates local variable map 
tables at all PEls during translation of the normal flow of a method. On 
an exception, LaTTe translates the catch block with the local variable 
map at the exception point. 

Since it does not affect the code quality in the normal flow, its perfor­
mance will be better than that of the first approach. However it requires 
additional information to remember local variable map, which makes it 
hard to use the approach in embedded systems with tight memory con­
straint. 

3The map information may be represented with an explicit map table or a sequence of copies 
between a PEl and catch blocks. 
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Figure 5.1 compares the two register allocation approaches. It shows 
two important differences between fixed allocation and flexbile one. 

First, in the fixed approach, the allocation results of local variable 
are same at every PEL However, in the flexible one, the map of local 
variables can be different at each PEL In (c), b is differently allocated at 
each PEL This fact makes JIT compiler hard to allocate b in the catch 
block. 

Second, the fixed approach prohibits allocator from coalescing be­
tween local variables, because it should allocate them to the fixed lo­
cation. Therefore the copies c=a, b=a remain as r3=r1, r2=r1 in (b). 
However, in the flexible approach, these copies are eliminated by copy 
coalescing like in (c). 

3. Partially fixed register allocation algorithm 

In this section, we describe our approach for the local variable con­
sistency problem. In brief, the JIT compiler fixes local variables only at 
PEls in try blocks while allocating local variables flexibly for other parts 
of a method and methods without catch blocks. 

void foo(int a,int b) 
void foo(int a,int b) 
{ 

{ 
/Iint c = aj copy coalesced map:( a,r 1 )(b,r2)( c,r 1) 

intc=a; 
r3=rl+rl; map:(a,rl )(b,r2)(c,r3) 

c;; a + c; 
try{ 

try { 
r2 = rl; map:(a,rl )(b,r2)(c,r3) 

b=a; 

PEl PEl map:(a,rl)(b,r2)(c,r3) 

b = b + a; r2=rl +rl; map:(a,rl)(b,r2)(c,r3) 

PEl 
PEl map:(a,rl)(b,r2)(c,r3) 

}catch(Exception e){ 
}catch(Exception e){ 

c = a + b; 
r3 = rl + r2; map:(a,rl)(b,r2)(c,r3) 

a) Java source b) Partially fixed allocation 

Figure 5.2. Register allocation example of partially fixed allocation 

Our register allocation algorithm is a lightweight version of what is 
used by LaTTe[4] tailored for embedded systems. The algorithm is lo­
cal, whose allocation unit is a basic block. During register allocation, a 
copy corresponding to push or pop is coalesced by mapping its source 
and destination onto the same register. The register allocation for each 
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instruction is comprised of three stages; l)copy coalescing, 2)source al­
location, and 3)destination allocation. 

copy coalescing The allocator coalesces all kinds of copies (local/stack, 
stack/stack, local/local) for copy elimination. In a try block, it 
does not coalesce a copy between local variables. 

source allocation Normally, a source variable has been already allo­
cated to a register during destination allocation for a previous in­
struction. If a source variable has been spilled, however, it is allo­
cated to a new free register with changing the local variable map. 
In a try block, a spilled local variable is copied to a scratch register 
without changing the local variable map. The scratch register is 
used for execution of the instruction. 

destination allocation A destination variable is allocated to a free 
register. In a try block, if a local variable has been coalesced with 
other variables, the other variables are splitted by adding a copy 
with preserving the the local variable map. And, like the source 
allocation, a spilled local variable is copied to a scratch register 
without modification of the local variable map. 

Actually, each stage has two modes; flexible and fixed mode. The 
flexible mode is for register allocation in normal parts of a method, 
while the fixed mode is for register allocation in try blocks .. 

In the flexible mode, the register allocation is almost similar to the 
forward sweep [4] in LaTTe. Copies between variables are aggressively 
eliminated through coalescing. So that the allocation result of a local 
variable may be changed when the variable is newly defined by an in­
struction, or when the variable is spilled and when the spilled variable 
is about to be used by an instruction. 

In the fixed mode, all local variables are allocated to their fixed mem­
ory locations (registers and stack memory), which are distinct to one 
another.4 The register allocator prohibits a local variable from being co­
alesced with other local variables. The local variable map is not changed 
at all. If a local variable is mapped to a memory by spilling, it is copied 
to a scratch register for the temporary use of an instruction. 

Figure 5.2 illustrates the register allocation for the same example in 
Figure 5.1. The first copy c=a outside the try block is removed by copy 
coalescing. On the while, the second copy b=a in the try block remains 

4Before entering a try block, the register allocator splits coalesced local variables to their 
own predetermined locations. 
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because a is fixed to r1 and b is fixed to r2 in the block. Since the 
allocation result of local variables is same at every PEl, the catch block 
can be translated easily with the same local variable map in the try 
block. 

4. Experimental result 

This section presents an empirical comparison of the performance be­
tween the three approaches for the local variable consistency problem; 
fixed, flexible, partially fixed allocation. For the performance evaluation, 
we measured the runtime counts of copy and spill, and the running time 
of benchmark programs. 

SPECjvm98[3] was used as benchmark programs. But the impleme­
nation of exception handling in flexible allocation is not finished, so we 
exculde the programs, _228_jack and _213_javac, that raise exceptions at 
runtime in benchmark. And for the same reason, we didn't measured 
memory overhead of flex allocation. 

SPECjvm98 might not be perfectly adequate as benchmark for embed­
ded systems because it has been designed for desktop systems running 
client Java programs. However, there is no standard Java benchmark 
set for embedded systems. 

For the experiment, pLaTTe, a Java JIT compiler for embedded sys­
tem, was used. pLaTTe is a lightweight version of LaTTe. It targets 
high-end embedded systems such as Web phone and Digital TV. The 
memory capacity of these high-end embedded system will be in the range 
from 16MB to 32MB and their CPU will be a 32-bit micro-controller 
with clock cycle between 100Mhz and 200Mhz. The runtime memory 
permitted to the JIT compiler is about from 500K to 2M. So, reduc­
ing memory overhead is very important issue. The static image size of 
pLaTTe is about 120K and the size of JITed code is three to five times 
larger than Java bytecode size. Our experiments was performed on the 
ARM based PC, Netwinder [1], equipped with StrongARMllO 275Mhz 
and 64MB memory, running Linux. 

In order to evaluate the performance of our approach, we compared 
the runtime counts of copy and spill(load+store). This result was pro­
duced by running SPECjvm98 with -810. Figure 5.3 shows the perfor­
mance difference between partially fixed allocation and fixed allocation. 

It shows that there is little performance difference between partially 
fixed allocation and flexible one. However, in the figure 5.4, the differ­
ence between partially fixed allocation and fixed one is not small. For 
_202_jess, the load/store count of partially fixed allocation is 40% that 
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of fixed one. On the other hand ,in _227 Jlltrt, the spill count of fixed 
allocation is smaller than that of partially fixed allocation. 

However, Figure 5.1 shows the effect is not high in real time. The 
overall performace enhancement of flexible allocation to the fixed allo­
cation is less than 1 percentage. One of the reasons is that it is not well 
tuned, so the effect of flexible allocation is not shown well. But we found 
that there are other important reasons. 

According to our analysis, there are two main reasons that sometimes 
the fixed allocation has better performance than others unexpectedly. 
One is due to inefficient compilation for some large methods, which might 
be used rarely in the embedded system. In the flexible allocation and 
the partially fixed one, the aggressive coalescing increased register pres­
sure, so it generated more spill codes. The other reason is that flexible 
allocation tends to generate many copies at join points in case of large 
methods having complex control flows. Since the current implementa­
tion traverses basic blocks in DFS order to do one pass allocation5 , all 
coalesced variables are splitted at join points. It generates additional 
copies that may not be done in the fixed allocation. Becasue in fixed 
allocation, probability of allocation conflict at join points is lower than 
that of the flexible one. 

Table 5.1. Runtime result for the SPECjvm98 

Benchmark fixed flexible partial flex/part fix/part 
_20Lcompress 24.69 24.51 24.59 0.992 0.995 
_202_jess 8.93 8.85 9.15 0.991 1.024 
_209_db 6.22 6.19 6.40 0.995 1.028 
_222_mpegaudio 676.29 675.83 676.79 0.999 1.000 
_227_mtrt 92.74 92.40 92.61 0.996 0.998 

5. Summary 

In this paper, we described our new approach for the local variable 
consistency problem. Our approach is to fix the local variable allocation 
at PEls only in try blocks and to allocate flexibly a variable in other 
region. In order to fix the local variable allocation, the register allocator 
prohibits coalescing between local variables, while allowing a local vari­
able to be coalesced with other non-local variables. The partially fixed 
register allocation reduces performance degradation caused by fixing 10-

5LaTTe traverses basic blocks in reverse post order to minimize copies at join point 
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Figure 5.3. Runtime copy and spill count ratio between flexible allocation and par­
tially fixed allocation for SPECjvm98 

cal variables. And there is little additional memory overhead because the 
local variable map does not have to be remembered as in the flexible reg­
ister allocation. However, experiment results show that the performance 
gap is just small between flexible allocation and fixed allocation. And 
the main reason is that the agressive copy coalescing with few registers 
cause more spill codes. So we expect the performace effect of partially 
fixed allocation will be shown on the system that has sufficient registers 
not to spill many variables like MIPS cpu whose registers are 32. 
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Abstract Energy consumption and power dissipation are increasingly becoming 
important design constraints in high performance microprocessors. Com­
pilers traditionally are not exposed to the energy details of the processor. 
However, with the increasing power/energy problem, it is important to 
evaluate how the existing compiler optimizations influence energy con­
sumption and power dissipation in the processor. In this chapter we 
present a quantitative study wherein we examine the effect of the stan­
dard optimizations levels -01 to -04 of DEC Alpha's cc compiler on 
power and energy of the processor. We also evaluate the effect of four 
individual optimizations on power/energy and attempt to classify them 
as "low energy" or "low power" optimizations. In our experiments we 
find that optimizations that improve performance by reducing the num­
ber of instructions are optimized for energy. Such optimizations reduce 
the total amount of work done by the program. This is in contrast to 
optimizations that improve performance by increasing the overlap in the 
program during execution. The latter kind of optimizations increase the 
average power dissipated in the processor. 

1. Introduction 

Energy consumption and power dissipation are increasingly becom­
ing important design constraints in high performance microprocessors. 
Power dissipation affects circuit reliability and packaging costs. Energy 
consumption directly affects battery life. With the increasing use of 
general purpose processors in the embedded world, designing low energy 
processors is important. Gowan et al. [5], discuss the power and energy 
trends of three generations of Alpha processors. Power dissipation in­
creases significantly from one generation to the next despite the reduced 
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supply voltages and advanced processor technologies. The paper shows 
the power in the Alpha 21264 increasing almost linearly with frequency, 
with power reaching 72 Watts at 600MHz. The maximum power dis­
sipated under worst case conditions was found to be about 95 Watts. 
These examples clearly indicate that power dissipation and energy con­
sumption will soon become important limiting factors in the design of 
high performance processors. 

Until recently, the two problems were being dealt with only at the 
circuit-level. Voltage scaling, low swing buses, conditional clocking etc 
have helped alleviate the problems enormously. However, architectural­
level and compiler-level analysis can help tackle these problems much 
earlier in the design cycle. Recently, several architectural and compiler 
techniques have been proposed to reduce power and energy [3, 6, 7, 8, 
9, 10, 11, 12]. In our work we concentrate on the influence of compilers 
on power dissipation and energy consumption. 

Compilers traditionally are not exposed to the energy details of the 
processor. Current compiler optimizations are tuned primarily for per­
formance and occasionally for code size. With the increasing power / ener-

gy problem, it is important to evaluate how the existing optimizations 
influence energy consumption and power dissipation in the processor. An 
interesting question to answer would be - if we compile for performance, 
are we automatically compiling for low power or low energy? Current 
compilers already have two axes in the optimizations used - namely com­
piling for speed (in general-purpose processors) and compiling for code 
size (in embedded systems), do we need a third axis with optimizations 
that compile for power/energy? 

To answer the above questions, we present a quantitative study wherein 
we examine the infl uence of a few state-of-the-art com piler optimizations 
on energy and power of the complete processor. We study the effect of 
the standard optimizations levels -01 to -04 of DEC Alpha's cc com­
piler on power and energy of the processor. We also evaluate the effect 
of four individual optimizations on power/energy and attempt to clas­
sify them as "low energy optimizations" or "low power optimizations" 
or both. The optimizations we study are simple basic-block scheduling, 
loop unrolling, function inlining, and aggressive global scheduling. For 
our experiments, we use Wattch [2], an architectural simulator that es­
timates CPU energy consumption. Wattch integrates parameterizable 
power models into the Simplescalar [4] processor simulator. 

In our study we find that the set of compiler optimizations that im­
prove performance by reducing the number of instructions executed are 
optimized for both energy and power. This is in contrast to optimiza-
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tions that improve performance by increasing the existing parallelism 
in the program. The latter kind of optimizations increase the aver­
age power dissipated in the processor. We find that optimizations such 
as common-subexpression elimination, copy propagation, loop unrolling 
are very good for reducing energy since they reduce the number of in­
structions in the program, hence the amount of total work done is less in 
programs with these optimizations. Such optimizations should definitely 
be included in the compile for power/energy switch. Optimizations such 
as instruction scheduling significantly increase power (and may occa­
sionally increase energy) because they increase the overlap in programs 
without reducing the total number of instructions in the program. How­
ever, such optimizations can be easily modified to take power details 
into consideration and can be used to increase performance without in­
creasing average power. 

The rest of the chapter is organized as follows: In Section 2 we discuss 
some previous work that has been done in the area of compilers and low 
power/energy. Section 3 shows a few examples that motivates the need 
for our study. We describe the different compiler optimizations evaluated 
in Section 4. In Section 5 we describe our experimental framework and 
discuss in detail the results obtained. Finally, we provide concluding 
remarks and future directions in Section 6. 

2. Related Work 

In this section we present some of the previous work done in under­
standing the interaction between the compiler and power/energy of the 
processor. 

The study by Kandemir et al. [7] quantitatively examines the influence 
of different high-level compiler optimizations on system energy. How­
ever, in their study, they evaluate only loop-nest optimizations such as 
loop fusion, loop fission, blocking, tiling, scalar expansion and unrolling. 
In our study, we discuss both the power dissipated and energy consump­
tion details, while in the paper by Kandemir et al., they report only 
energy details. Their main observation in the paper is that the opti­
mizations appear to increase the energy consumed in the core while re­
ducing the energy consumed in the memory system. Unoptimized codes 
consume more energy in the memory system. 

There have been a few instruction scheduling techniques proposed 
which attempt to reduce the power dissipated in the processor. Su et 
al. [11] proposed cold scheduling, wherein, they assign priority to in­
structions based on some pre-determined power cost and use a generic 
list scheduler to schedule the instructions. The power cost of scheduling 
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an instruction depends on the instruction it is being scheduled after. 
This corresponds to the switching activity on the control path. Tobu­
ren et al. [12] propose another power-aware scheduler which schedules as 
many instructions as possible in a given cycle until the energy threshold 
of that cycle is reached. Once that precomputed threshold is reached, 
scheduling proceeds to the next time-step or cycle. In our work, by 
evaluating several state-of-the-art optimizations, we attempt to identify 
other optimizations besides instruction scheduling that can be improved 
if the power/energy models of the processor were exposed to them. 

Significant work has been done in reducing energy consumption in the 
memory. Most techniques achieve a reduction in energy through innova­
tive architectural techniques [6, 8, 9, 10]. Some of the works that include 
compiler involvement are [6] and [10]. In [6], the authors suggest the use 
of an L-cache. An L-cache is a small cache which is placed between the 
I-cache and CPU. The L-cache is very small (holds a few basic blocks), 
hence consumes less energy. The compiler is used to select good basic 
blocks to place in the L-cache. Another approach to reduce memory en­
ergy is Gray code addressing [10]. This form of addressing reduces the 
bit switching activity in the instruction address path. Bunda et al. [3] 
and Asanovic [1] investigated the effect of energy-aware instruction sets. 
These techniques would involve the compiler even earlier in the code 
generation process. The paper by Bunda et al [3] concentrates on re­
ducing memory energy, and Asanovic [1] investigates new instructions 
to reduce energy in the memory, register files and pipeline stages. 

3. Motivating Examples 

Consider the data dependence graph (DDG) shown in Figure 6.1(b). 
It contains six operations. All operations except op E have a latency of 
one cycle, op E takes two cycles to complete. We will assume there are 
infinite functional units for this example. An instruction scheduler that 
attempts to also optimize for registers would schedule op E as close to 
op F as possible. The resulting schedule can be seen in Figure 6.1(b). If 
we assume that each operation consumes one unit of power, compared 
to the schedule in Figure 6.1(b), the schedule in Figure 6.1(c), dissipates 
less peak power (3 units vs 2 units in Figure 6.1(b)). Figure 6.1(c) is 
also a valid schedule. By extending the lifetime of op E by one cycle, we 
reduce the peak power dissipated without affecting performance. The 
design choice of letting op E occupy the register for one cycle longer 
than required will prove to be inexpensive only if there are sufficient 
number of registers. Current schedulers do not take power details into 
consideration and hence might schedule op E in cycle 2 even if there are 
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sufficient registers. This example shows that two variations of the same 
code can have the same performance but different power requirements. 

(a) Example DDG 

cycle 2 
---------

cycle 3 
------------

cycle 4 

cycle 1 

cycle 3 

cycle 4 
---------------------------

(b) Peak Power = 3 
Energy = 6 

(c) Peak Power = 2 
Energy = 6 

---------------------------

Figure 6.1. Motivating Example 

Another good candidate for reducing energy without increasing power 
would be function-in-lining. Function-in-lining is done in cases where 
the callee procedure body is small. In these cases, the code required for 
the calling sequences outweigh the code in the procedure body. If this 
procedure is called many times, in-lining can save a tremendous number 
of instructions. Function-in-lining does not increase the overlap such 
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as instruction scheduling, hence this optimization keeps energy low and 
holds the power constant. This optimization can be a good candidate 
to use in the "compile for power/energy" switch. 

These examples show that compilers can be optimized to produce code 
for low power or low energy, without sacrificing performance. In this 
study we hope to expose the current void in the area of power/energy­
aware compilers and attempt to identify good candidates for further 
improvement. 

4. Compiler Optimizations 

In our study we evaluate the influence of compiler optimizations on 
processor power/energy using the native C compiler ee on a Dec Alpha 
21064 running the OSF1 operating system. We also used the gee com­
piler to study the effect of a few individual optimizations. The details 
of both the compilers and their different options are presented in the 
following subsections. 

4.1. Standard Optimization Levels 

The different levels in the ee compiler, along with the optimizations 
performed at each level are described below. 
-00 No optimizations performed. In this level, the compiler's goal is 
to reduce the cost of compilation. Only variables declared register are 
allocated in registers. 
-01 Many local optimizations and global optimizations are performed. 
These include recognition and elimination of common subexpressions, 
copy propagation, induction variable elimination, code motion, test re­
placement, split lifetime analysis, and some minimal code scheduling. 
-02 This level does inline expansion of static procedures. Additional 
global optimizations that improve speed (at the cost of extra code size), 
such as integer multiplication and division expansion (using shifts), loop 
unrolling, and code replication to eliminate branches are also performed. 
Loop unrolling and elimination of branch instructions increase the size 
of the basic blocks. This helps the hardware exploit instruction level 
parallelism (ILP) in the program. 
-03 Includes all -02 optimizations and also does inline expansion of 
global procedures performed. 
-04 Software pipelining, an aggressive instruction scheduling technique 
used to exploit ILP in loops is performed using dependency analysis. 
Vectorization of some loops on 8-bit and 16-bit data is also done. This 
level also invokes a scheduling pass which inserts NOP instructions to 
improve the scheduling. 
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We use the FORTRAN g77 compiler to compile the SpecFP bench­
marks. g77 is a program to call gee with options to recognize programs 
written in Fortran. The standard optimization levels offered by gee are 
listed below: 
-00 No optimizations performed. 
-01 This level is very similar to the -01 in ee. Optimizations performed 
are common subexpression elimination, combining instructions through 
substitution (copy propagation), dead-store elimination, loop strength 
reduction and minimal scheduling. 
-02 Nearly all supported optimizations that do not involve a space­
speed tradeoff are performed. Loop unrolling and function inlining are 
not done, for example. This level also includes an aggressive instruction 
scheduling pass. 
-03 This turns on everything that -02 does, along with also inlining 
of procedures. 

We note that in both ee and gee, the optimizations that increase the 
ILP in a program are in optimization levels -02, -03 and -04 (-04 
only in ee). The different levels include almost the same optimizations 
in both the compilers. We use both ee and gee in our work. We use ee 
wherever possible, and gee wherever specific hooks to control individual 
optimizations are required. 

4.2. Individual Optimizations 

We analyze the impact of four different individual optimizations pro­
vided by gee. We chose gee for this because gee provides more number 
of distinct individual optimizations than ee to chose from. All the indi­
vidual optimizations are applied on top of optimizations performed at 
-01. The individual optimizations chosen are: 
-fsehedule-insns This optimization attempts to reorder instructions to 
eliminate execution stalls that occur due to unavailability of required 
data. This helps machines that have slow floating point or memory load 
instructions by allowing other instructions to be issued until the result 
of the load or floating point instruction is required. The scheduler used 
is a basic-block list-scheduler and it is run after local register allocation 
has been performed. 
-fsehedule-insns2 Similar to -fsehedule-insns, but requests an addi­
tional pass of instruction scheduling after register allocation has been 
done. This pass does aggressive global scheduling before and after global 
register allocation. Post pass scheduling (when scheduling is done after 
register allocation) minimizes the pipeline stalls due to the spill instruc­
tions introduced by register allocation. 
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-finline-functions Integrates all simple functions into their callers. The 
compiler heuristically decides which functions are simple enough to be 
worth integrating in this way. 
-funroll-loops Perform the optimization of loop unrolling. This is done 
only for loops whose number of iterations can be determined at compile 
time or run time. 

5. Experimental Results 

In this section we first describe the Wattch simulator and our bench­
marks. We then present a detailed analysis of our results. 

5.1. Wattch 1.0 and Benchmarks 

We use the Wattch 1.0 simulator [2] for our experimentation. Wattch 
is an architectural simulator that estimates CPU energy consumption. 
The power/energy estimates are based on a suite of parameterizable 
power models for various hardware structures in the processor and on 
the resource usage counts. The power models are interfaced with Sim­
plescalar [4]. sim-outorder, Simplescalar's out-of-order issue simulator 
has been modified to keep track of which unit is being accessed in each 
cycle and record the total energy consumed for an application. 

Wattch has three different options for clock gating to disable unused 
resources in the processor. The simplest clocking style assumes that the 
full modeled power will be consumed if any accesses occur in a given cy­
cle, and zero otherwise. This is ideal clock gating. The second possibility 
assumes that if only a portion of a unit's port are accessed, the power is 
scaled linearly according to the number of ports being used. In the third 
clock gating scheme, power is scaled linearly with port or unit usage, but 
unused units dissipate 10% of their maximum power. This corresponds 
to the static power dissipated when there is no activity in unit. We 
chose power and energy results corresponding to the third scheme since 
it is the most realistic of all schemes. We used the default configuration 
in sim-outorder for our study, but changed the RUU (Register Update 
Unit) from 16 to 32 and LSQ (Load Store Queue) size from 8 to 16. The 
functional unit latencies exactly match the functional units latencies in 
the Alpha 21064 processor. We use the process parameters for a .35um 
process at 600MHz. 

We chose six different benchmarks for our study - three Speclnt95 
benchmarks, namely compress, go and li, two SpecFp95 benchmarks 
su2cor and swim, and saxpy, a toy benchmark. 
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5.2. Results 

In the following subsections we present a detailed analysis of the re­
sults obtained. We first discuss the influence of standard optimizations 
on energy and power following which we study the affects of individual 
optimizations. 

5.2.1 Influence of Standard Optimizations on Energy. 
Table 6.1 shows the results obtained when the benchmarks are compiled 
with different standard optimizations levels. We present the results of 
all optimizations relative to the result of optimization level -00. For 
example, when we consider the number of instructions, the percentage 
of instructions executed by a benchmark optimized with option -02 is 
given by: 

# of Insts Executed by Prog02 
% of Insts Executed by Prog02 = # fIE d b P * 100 o nsts xecute y rogoo 

For example, in Table 6.1, we see that compress when compiled with 
-02 executed 17.96% fewer instructions than compress when compiled 
with -00. Our results are presented in this form for all benchmarks and 
for all optimizations. As mentioned in Section 4, we used cc to com­
pile the Speclnt benchmarks and saxpyand g77 to compile the SpecFP 
benchmarks su2cor and swim. 

We observe that the number of instructions committed drops drasti­
cally from optimization -00 to -01, and also drops significantly in codes 
optimized with -02 and -03. There is however a very marginal increase 
in the number of instructions in compress. In codes optimized with -04 
option, the number of instructions increases due to the extra NOPs code 
generated for scheduling. 

The reduction in number of instructions directly influences execution 
time or performance. The performance improvement is significant in 
-01 when compared to -00, sometimes as high as 73% (swim). -02, 
-03 also lead to significant improvement over -01, for example, we see 
an 8% improvement in li with -02 optimization. In some benchmarks 
like saxpy the improvement is only about 0.6%. Optimizations -02, -03 
improve performance in compress even though the number of instructions 
Increases. 

The energy consumed by the code is again directly proportional to 
the number of instructions. Here we see that even though -02 and -03 
improve performance in compress, the energy consumed is higher. This 
is because of the higher number of instructions. Hence, the amount 
of work done is more. In all the benchmarks, we see that the energy 
decreases when the number of instructions decrease. Hence. if we are 
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Table 6.1. Effects of Standard Optimization on Power/Energy 

Benchmark opt level Energy Exec Time Insts Avg Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 74.48 81.55 81.52 91.33 99.96 

compress 02 75.13 81.44 82.04 92.25 100.73 
03 75.13 81.44 82.04 92.25 100.73 
04 79.01 82.77 86.11 95.45 104.03 
00 100.00 100.00 100.00 100.00 100.00 
01 66.20 64.13 68.94 103.23 107.50 

go 02 62.62 61.31 63.01 102.14 102.78 
03 62.62 61.31 63.01 102.14 102.78 
04 63.67 62.19 63.75 102.38 102.51 
00 100.00 100.00 100.00 100.00 100.00 
01 81.32 83.66 83.18 97.20 99.42 

Ii 02 79.60 75.97 82.97 104.78 109.21 
03 79.60 75.97 82.97 104.78 109.21 
04 85.71 77.89 90.96 110.05 116.78 
00 100.00 100.00 100.00 100.00 100.00 
01 97.38 100.24 92.49 97.15 92.27 

saxpy 02 97.69 99.38 92.49 98.30 93.07 
03 97.69 99.38 92.49 98.30 93.07 
04 98.31 99.27 92.84 99.02 93.51 
00 100.00 100.00 100.00 100.00 100.00 
01 42.09 51.04 33.21 82.46 65.06 

su2cor 02 40.99 47.52 33.10 86.28 69.67 
03 40.99 46.37 33.10 87.65 71.38 
00 100.00 100.00 100.00 100.00 100.00 
01 30.10 36.64 20.01 82.15 54.63 

sWim 02 28.93 34.01 19.05 85.06 56.01 
03 28.93 34.01 19.05 85.06 56.01 

compiling for energy, we should chose optimizations such as common 
sub-expression elimination, induction variable elimination and unrolling 
that reduce the number of instructions executed. Optimizations such as 
the ones in -04 (inserting NOPs to improve scheduling), may improve 
performance, but can also increase the number of instructions, leading 
to higher energy requirements. The energy increase is seen to be up to 
4 % (in compress). 

5.2.2 Influence of Standard Optimizations on Power. To 
study the influence of compiler optimizations on power, we again refer 
to Table 6.1. We see that though the number of instructions and the 
number of cycles taken reduces in higher optimization levels, the number 
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of instructions do not reduce enough to keep the instructions per cycle 
(IPC) constant. IPC reduces in -01 codes but increases in -02, -03 and 
-04: codes. IPC in -00 is low because of the poor quality of code pro­
duced. Since optimizations such as common subexpression elimination 
improve code by reducing instructions rather than increasing available 
parallelism, IPC does not increase in -01 codes. Most optimizations 
that increase IPC such as instruction scheduling, loop unrolling etc are 
included in -02, -03 and -04: levels. Power dissipated is the amount 
of work done in one cycle. This is directly proportional to the IPC. 
Hence, we see that optimizations that increase IPC, increase the power 
dissipated. Instruction scheduling and other -02, -03 optimizations 
are good for performance improvement but are bad when instantaneous 
power is the main concern. 

5.2.3 Influence of Individual Optimizations on Energy and 
Power. We refer to Tables 6.2 to 6.7 for experiments on how the 
different individual optimizations effect power/energy. We show the re­
sults for each benchmark separately. The tables show the performance, 
power and energy of each of the optimizations relative to performance, 
power and energy of code with -00 (similar to Table 6.1). Since the indi­
vidual optimizations are applied over the -01 option, in our discussions, 
we always compare results of the optimizations with results of -01. We 
first discuss the effects of the instruction scheduling options. 

Table 6.2. Individual Optimizations on Compress 

opt level Energy Exec Time Insts Power IPC 
00 100.0 100.0 100.0 100.0 100.0 
01 67.66 74.68 60.46 90.60 80.95 

inline-func 67.69 74.68 60.46 90.63 80.95 
sched-instr2 68.82 74.94 63.21 91.82 84.35 
sched-instr 66.66 73.47 59.83 90.72 81.43 
unroll-loops 66.84 74.19 59.90 90.09 80.74 

The -fschedule-instr optimization does simple basic block list-scheduling 
and -fschedule-instr2 does aggressive global scheduling. We expect both 
options to increase the IPC and hence the power. We can see from the 
tables that IPC goes up in most benchmarks, in some benchmarks up to 
4.6% (in su2cor). The power increase is up to 3.9% . In Ii, the power in­
creases by as much as 10%. The aggressive scheduler (prepass scheduler) 
increases register pressure and hence causes significant number of spills, 
thereby increasing the total number of instructions executed and the to-
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Table 6.3. Individual Optimizations on Ii 

opt level Energy Exec Time Insts Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 70.91 74.67 66.18 94.96 88.63 

inline-func 71.02 73.14 68.00 97.11 92.97 
sched-instr2 69.56 66.65 68.33 104.36 102.52 
sched-instr 69.56 66.65 68.33 104.36 102.52 
unroll-loops 66.05 59.91 68.19 110.24 113.81 

Table 6.4. Individual Optimizations on saxpy 

opt level Energy Exec Time Insts Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 96.78 98.56 96.21 98.19 97.61 

inline-func 96.78 98.56 96.21 98.19 97.61 
sched-instr2 97.07 97.14 96.27 99.93 99.11 
sched-instr 96.79 98.52 96.15 98.24 97.60 
unroll-loops 96.87 98.72 95.97 98.13 97.21 

Table 6.5. Individual Optimizations on su2cor 

opt level Energy Exec Time Insts Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 42.09 51.04 33.21 82.47 65.07 

inline-func 42.06 51.01 33.21 82.46 65.11 
sched-instr2 42.49 50.36 34.02 84.38 67.55 
sched-instr 40.90 47.79 33.30 85.58 69.67 
unroll-loops 40.17 48.35 31.17 83.08 64.46 

tal energy. The increase in number of instructions and energy are up to 
3.52% and 2.14% respectively. This optimization needs to be improved 
upon if power and energy are a concern. We would see a greater impact 
of these optimizations if the target processor was an in-order machine, 
wherein the compiler is fully responsible for exposing the parallelism. 
In an out-of-order issue machine, the hardware can find the parallelism 
even if the compiler does not do any reordering. The reason why we see 
some improvement in performance (and increase in IPC) is because the 
hardware is limited by the instruction window size, the global scheduler 
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Table 6.6. Individual Optimizations on swim 

opt level Energy Exec Time Insts Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 30.06 36.64 20.02 82.02 54.64 

inline-func 30.06 36.64 20.02 82.02 54.64 
sched-instr2 30.91 36.39 20.53 84.92 56.41 
sched-instr 29.83 35.11 20.32 84.95 57.86 
unroll-loops 29.29 35.38 18.19 82.80 51.43 

Table 6.7. Individual Optimizations on go 

opt level Energy Exec Time Insts Power IPC 
00 100.00 100.00 100.00 100.00 100.00 
01 40.97 42.75 42.65 95.83 99.77 

inline-func 40.92 42.78 42.58 95.64 99.54 
sched-instr2 43.07 44.01 45.25 97.87 102.82 
sched-instr 43.52 44.89 46.52 96.96 103.63 
unroll-loops 39.38 41.95 39.30 93.88 93.69 

which has the full program as its scope helps the hardware see more 
instructions than it otherwise would have. 

We next discuss the impact of unrolling. Unrolling appears to be a 
good optimization to use for energy because the number of instructions 
reduce significantly. We are able to reduce the number of instructions 
by 3.35% in go, the energy falls by 1%. We see that in the some bench­
marks the energy falls by 5% (li). However, reducing the energy does 
not necessarily reduce power. For instance, in ti, the power goes up 
by 10%. Unrolling increases the size of the basic block, hence allows 
the hardware increase the overlap of instructions. This leads to an in­
crease in the number of simultaneous operations being executed. It may 
be noted that the IPe in ti increases by 25%. However, this observa­
tion is not consistent among all the benchmarks, in many benchmarks, 
there is no increase in IPe. This is because the target architecture has 
a good branch predictor, it does unrolling in hardware, hence reducing 
the impact of software unrolling. We are currently investigating how the 
unrolling optimization affects power if we turned off the branch predic­
tion hardware. We expect to see a significant increase in IPe and power 
in the codes after unrolling has been applied. 
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Our next optimization is inlining of function calls. Inlining as ex­
plained in the motivation section will reduce the number of instructions 
and hence energy. However, in our benchmarks, only go and su2cor 
show a very marginal decrease in energy. In our future work, we will 
be investigating further with a better set of benchmarks more suited for 
this optimization. 

6. Conclusions 

In this chapter we evaluated the impact of using the different levels of 
optimizations in the cc compiler on system power and energy. We also 
evaluated the effect of a few individual optimizations. We found that the 
energy consumption reduces when the optimizations reduce the number 
of instructions executed by the program, i.e., when the amount of work 
done is less. The standard optimization level -01 reduces the number of 
instructions drastically as compared to -00 because it invokes optimiza­
tions such as common subexpression elimination, an optimization used 
to eliminate redundant computations in the program. The drop is not 
that significant in -02, -03 and -04 optimizations. The energy also 
drops in the same proportion. 

We found power dissipation to be directly proportional to the aver­
age IPC of program. -02, -03 and -04 levels have significantly higher 
IPC and hence higher average power. The optimization levels -02, -03 
and -04 include optimizations such as instruction scheduling, which are 
typically used to increase the parallelism in the code. 

Out of the four individual optimizations we evaluated, we found un­
rolling to be a good optimization for energy reduction but it increases 
power dissipation. Function in lining is good for both energy reduction 
and reducing power dissipation. Instruction scheduling was found to 
be a bad optimization to use when power is a concern. Simple sched­
ulers did not affect the energy consumption, but aggressive schedulers 
i.e., schedulers that increased register pressure and introduced spills, in­
creased the energy consumption as well. For our future work, we would 
like to evaluate more individual optimizations and improve the ones that 
we find are currently unoptimized for power or energy. 
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Abstract CMOS technology scaling poses challenges in designing dynamically 
scheduled cores that can sustain both high instruction-level parallelism 



www.manaraa.com

118 INTERACTION BETWEEN COMPILERS ... 

and aggressive clock frequencies. In this paper, we present a new ar­
chitecture that maps compiler-scheduled blocks onto a two-dimensional 
grid of ALUs. For the mapped window of execution, instructions ex­
ecute in a dataflow-like manner, with each ALU forwarding its result 
along short wires to the consumers of the result. We describe our stud­
ies of program behavior and a preliminary evaluation that show that 
this architecture has the potential for both high clock speeds and high 
ILP, and may offer the best of both the VLIW and dynamic superscalar 
architectures. 

Keywords: Static scheduling, dynamic issue, dataflow, instruction level parallelism, 
VLIW, out-of-order execution. 

1. Introduction 

Conventional microarchitectures have been improving in performance 
by approximately 50-60% per year, improving the instructions per cycle 
(IPC) using more transistors on a chip and increasing the clock speed. 
However both strategies will fail for future technologies (50nm and be­
low), with clock speed growth slowing down because of fundamental 
pipelining limits and wire delays making architectures communication 
bound [1]. Thus, today's architectures will not scale, showing diminish­
ing returns in IPC even with increasing chip transistor budgets. New 
designs must address these issues, efficiently utilizing the increasing tran­
sistor budget while overcoming communication bottlenecks. 

One approach for extracting ILP is through conventional superscalar 
cores that detect parallelism at run-time. The amount of ILP that can be 
detected is limited by the issue window, whose logic complexity grows as 
the square of the number of entries [12]. Conventional architectures also 
rely on many frequently accessed global structures, such as register files, 
re-order buffers and issue windows, which become bottlenecks limiting 
clock speed or pipeline depths. 

Another approach for extracting parallelism is taken by VLIW ma­
chines, in which ILP analysis is performed at compile time. Instruction 
scheduling is performed by the compiler, orchestrating the flow of execu­
tion statically. This approach performs well only for regular workloads 
and suffers from the drawback that dynamic events are not handled well 
- a stall in one functional unit forces the entire machine to stall, since 
all functional units must be synchronized. 

In this paper, we describe a new architecture called the Grid Pro­
cessor that takes into consideration the technology constraints of wire 
delays and pipelining limits. The compiler is used to detect parallelism 
and statically schedule instructions on a computation substrate, but in-
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structions are issued dynamically. We propose an execution substrate 
that consists of a set of named distributed computing elements to which 
the compiler statically assigns individual instructions. 

The architecture does not suffer from VLIW issue restrictions, as in­
structions are issued dynamically and executed in a dataflow fashion. 
Instructions from a compiler-generated basic block or hyper block are 
mapped statically to nodes in the computation array, with each node 
being assigned one or more instructions. The nodes issue instructions 
dynamically when the input operands are available. Temporary values 
produced and consumed inside a block are not visible to the architec­
tural state, and are instead forwarded directly from the producers to 
their consumers. 

We propose a fine-grained partitioning of the issue window and associ­
ated functional units (FU). The computation array includes both a grid 
of issue window-FU pairs (nodes) and a dedicated communication net­
work for passing data. Data produced at a node are routed dynamically 
through intermediate nodes to their eventual destinations. The archi­
tecture is a hybrid between conventional superscalar and conventional 
VLIW architectures, issuing instructions dynamically with 

In the Grid Processor, the available transistor budget is used to build 
an array of computation elements aimed at overcoming several challenges 
of communication overhead in future systems. First, by forwarding val­
ues directly between producers and consumers, the reliance on central­
ized structures is reduced. Second, compiler controlled physical layout 
ensures that the critical path is scheduled along the shortest physical 
path. Finally, instruction blocks are mapped onto the grid as single 
units of computation amortizing scheduling and decode overhead over a 
large number of instructions. The reduced reliance on centralized struc­
tures allows the computation substrate to be clocked at high speeds. 

The remainder of this paper is organized as follows. Section 2 de­
scribes the key features of the Grid Processor and demonstrates how 
programs are mapped onto it. Section 3 characterizes certain aspects 
of program behavior indicating that existing applications are amenable 
for execution on the Grid Processor. Section 4 describes related work 
pertaining to wide-issue and dataflow oriented machines. Section 5 con­
cludes with a discussion on some of the secondary advantages including 
power reduction and speculation control as well as the remaining issues 
to be solved. 
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Express channel Nearest neighbor interconnect 

Figure 7.1. Grid block diagram. Express channels connect the last row with the first 
row 

2. Architecture 

The Grid Processor consists of a computation substrate that is config­
ured as a two-dimensional grid of fine-grained computation nodes con­
nected by an interconnection network. The compiler partitions the pro­
gram into a sequence of blocks (basic blocks or hyper blocks [16]), per­
forms renaming of temporaries, and schedules instructions in a block 
to nodes of the grid. Instruction traces generated at run-time could be 
used instead of blocks generated by the compiler. Blocks are fetched one 
at a time and their instructions are mapped to the computation nodes 
en masse as assigned by the compiler. Execution proceeds in a dataflow 
fashion with each instruction sending its results directly to other instruc­
tions that use them. A set of interfaces are used by the computation 
substrate to access external data. 

2.1. Computation Nodes 

Figure 7.1 shows a high level overview of the grid with some of the as­
sociated interfaces. Nearby neighbors in the grid are connected by short 
wires that have small communication delays 1. Fast express channels 
connect nodes that are physically far apart in the grid. The instruction 
sequencer fetches blocks of instructions from the instruction memory and 

1The figure shows one possible grid interconnect topology as an example only. 
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Figure 7.2. Organization of a computation node 

places those instructions on the nodes as sched uled by the com piler. The 
block termination control interfaces with the register file and the mem­
ory interface, detects when a block completes execution, and commits 
architecturally visible data to the register file and memory. The memory 
interface is used to communicate with the load/store queue, caches, and 
main memory. 

The computation nodes are lightweight units that perform the func­
tion of execution, temporary storage, and data forwarding. Each com­
putation node consists of a set of functional units, storage structures, an 
instruction wakeup unit, a router, and read/write ports for communica­
tion. Figure 7.2 shows the layout of a computation node. The functional 
units consist of an integer unit and optionally a floating point unit that 
perform the actual execution. The storage structures include a set of 
queues and buffers for storing the instructions, their input operands, 
and data tokens that need to be forwarded to other nodes in the grid. 
The instruction wakeup unit matches instructions with their operands 
as they arrive and issues them to the functional units for execution. 
The router examines tokens in the storage structures and forwards them 
along one of the many paths out of this node to their eventual targets. 
Data tokens meant for other nodes bypass the ALU and are directly 
forwarded by the router to their destinations. 

2.2. Execution Model 

The compiler partitions the program into a sequence of blocks. Blocks 
are constructed such that there are no internal control flow changes, and 
all control transfers out of a block initiate instructions in other blocks. 
These blocks may be basic blocks, hyperblocks, or program traces gener­
ated at run-time. Figure 7.3 shows a stream of instructions that has been 
partitioned by the compiler into three different blocks (basic blocks in 
this case) Bl, B2, and B3. Explicit move instructions, separate from the 
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OxOOOO add rl, r2, r3 
Ox0004 add r2, r2, rl 
Ox0008 ld r4, (r1) 
OxOOOc add r5, r4, 1 
Ox0010 beqz r5, Oxdeac 

II End of block 81 

/I 11 
/I 12 
/I 13 
/I 14 
/I 15 

Ox0014 add rl0, r2, r3 /I 16 
Ox0018 add rll, r2, r3 II 17 
OxOOlc ld r4, (rl0) II 18 
Ox0020 ld r5, (rl1) /I 19 

INTERACTION BETWEEN COMPILERS ... 

Ox0024 mul r31, r4, r5 II 110 
Ox0028 bne r31, OxbeeO II III 

II End of block 82 

Ox002c xor r8, r5, 1 /I 112 
Ox0030 511 r9, r4, r8 II 113 
Ox0034 add r13, r9, 8 II 114 
Ox0038 add r12, r9, r2 II 115 
Ox004c 5W r13, r12 II 116 

II End of block 83 

Ox0050 add rl, r6, r9 

Ox0070 j mp Ox0050 

Figure 7.3. A sample instruction stream 

computation instructions, are generated for the registers read by every 
block. The move instructions fetch block inputs from the register file and 
pass them as internal (temporary) values to the block. Figure 7.4 shows 
the Data Flow Graph (DFG) of the blocks Bl, B2, and B3 in Figure 7.3 
along with the move instructions. As shown in the figure, all instruc­
tions have been renamed with temporary registers for their operands 
and move instructions generated for every input register. For example, 
in block Bl, two move instructions, move t2, r2 and move t3, r3 are 
generated by the compiler for input registers r2 and r3. Inside a block, 
all values are referenced using temporary names. The move instructions 
associates register inputs of the block and temporaries. Data values that 
must be passed to other blocks are written to the register file. 

At run-time, the instruction sequencer fetches a block from the in­
struction memory and maps it onto the grid en masse; there is no serial­
ization of fetch, decode and rename for the instructions within a block. 
Individual instructions are written to the storage structures of the nodes 
to which they have been assigned at compile time. Block execution is ini­
tiated by the move instructions which read register data and send them 
to their consumers. The instruction wakeup unit matches incoming data 
with an instruction and issues ready instructions to the functional unit 
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: move t4, r4 
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0p qv add til, t2, t3 

@ @ Idt5,(tll) )/ 
110 mul t31, t4, t5 

111 bnez t31, OxbeeO 
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Figure 7.4. Basic blocks shown as dataflow graphs. Registers are marked with "r" 
and temporaries with "t". 

for execution. The results of the computation are tagged and forwarded 
by the router through the interconnect to their eventual destinations. 

2.2.1 Instruction Mapping. The compiler generates a map­
ping by physically laying out the data flow graph of each block on a 
grid. Every computation instruction in the block is assigned to a node 
in the grid, with the critical path scheduled along the shortest possible 
physical path. All output operands are renamed with the positions of 
consumer nodes. Move instructions serve the purpose of associating reg­
ister data with positions of their consumer nodes. Figure 7.5 illustrates 
a layout of the grid with instructions mapped on the computation el­
ements. Instructions 11 and 12 of block Bl in Figure 7.4 are mapped 
on the grid at positions (0,1) and (1,1) respectively. Correspondingly, 
the move instruction move t2, r2 has (0,1) and (1,1) encoded in its 
destination fields and register name r2 in its input field. 
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Bl B2 

B3 

Figure 7.5. Basic blocks mapped on a grid of dimension 4x4, with the 3 nearest 
neighbors reachable directly. Instruction destinations are ordered pairs (x, y), which 
identify a consumer with a relative position x nodes below and y nodes to the right 
of the producer. 

2.2.2 Instruction Wakeup and Execution. As described 
in section 2.1, multiple instructions are mapped onto a single node and 
data are written to an operand buffer when they arrive. Upon arrival 
of a data token, the instruction and operand buffers are examined to 
wake-up and issue ready instructions. The wakeup delays will be con­
siderably smaller than seen in conventional cores because of smaller issue 
windows. The computation node serially performs two operations when­
ever an operand arrives - wakeup and execute. Serializing wakeup and 
execute may increase the cycle time along the execute-execute path of de­
pendent instructions. Wakeup-execute can be pipelined into two stages, 
if the instruction wakeup does slow the clock. The execute phase of the 
producer can be overlapped with the wakeup phase of its consumer. 

Conventional superscalar cores have dedicated bypass paths to for­
ward data which can be used to guarantee that following the execution 
of an instruction its dependents will have that data in the next cycle. 
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In the Grid Processor, since data are routed dynamically, there is no 
dedicated path that is guaranteed to be free when an instruction com­
pletes execution to forward its data to its consumer. However, there 
are several mechanisms that can alleviate this problem. Special wakeup 
tokens could be generated during the issue stage of a producer instruc­
tion. They reach the consumer nodes at the end of the stage, reserving 
a channel for the data to follow in the next cycle. Alternately, specula­
tive instruction issue could be used to hide the select latency with local 
rollback mechanisms in the event of incorrect issue. 

2.2.3 Block Mapping. The instruction and operand storage 
structures at a node can be used to buffer multiple instructions and 
data, which are associated through tags. There are three reasons to have 
multiple instructions mapped on a node. First, graphs larger than the 
physical grid can be folded over and mapped on the grid with more than 
one instruction at a node. Second, instructions from different blocks that 
are fetched speculatively (using control speculation or from speculative 
threads [19]) can be mapped at a node. Finally, blocks from different 
threads can also be mapped to support multithreading. 

2.3. Instruction Encoding 

The Grid Processor ISA is divided into data movement instructions 
and computation instructions. Data movement instructions include move, 
split and repeat instructions. The move instructions fetch block inputs 
from the register file and pass them as temporary values to the block. 
Encoding space limitations restrict the number of targets that can be 
specified in an instruction. The split instructions replicate data to reach 
additional targets. The range of each target (distance from the pro­
ducer) that can be specified is finite. The repeat instructions are used to 
forward data to targets outside the range. There is a trade-off between 
the instruction size, number of specifiable targets and the range of each 
target. 

Every instruction is encoded with an opcode field, destination field, 
and in the case of move instructions, an input field. The destination field 
consists of multiple targets, with each target encoded with the position of 
the consumer expressed as an offset. The move instructions are encoded 
with an input register name and its destinations. Figure 7.5 shows a 
sample encoding of a move instruction and a computation instruction. 
The move instruction move t2,r2 is encoded as move (0,1), (1,1) ,r2 
corresponding to the input register r2 and consumer instructions 11 and 
12 that are mapped at (0,1) and (1,1) respectively. Instruction 11 is 
encoded with destinations corresponding to consumers 12 and 13 of the 
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temporary t1. 12 is mapped at the node directly below 11 and 13 is 
mapped at the node one to the right and one below 11. An extra bit 
(not shown in the figure) is necessary to specify the order of the input 
operands. 

2.4. Role of the Compiler 

The compiler plays an important role in the Grid Processor. Apart 
from detecting ILP, the compiler constructs blocks that are scheduled 
on the grid, and defines mechanisms for intra and inter-block communi­
cation. The compiler must also generate data movement instructions to 
overcome encoding space limitations. 

In the Grid Processor, blocks are fetched as a single unit, mapped 
on the grid, and executed in a dataflow fashion. Since the instructions 
are fetched at a block granularity, it is desirable to have large blocks 
and good block utilization. Block utilization is defined as the ratio of 
dynamically executed instructions to the static size of the block. One 
method of building large blocks is to build hyper blocks based on profiling 
information. Register file communication for data passed between suc­
cessively executed blocks can be bypassed using the grid interconnect, 
thereby "stitching" these blocks as a single dataflow graph. The com­
piler must define interfaces and mechanisms to stitch together multiple 
blocks. Since data movement instructions add overhead, when sched­
uling the graph, the compiler should minimize the critical path and 
attempt to minimize the number of such instructions. 

3. Preliminary Analysis 

In this section, we investigate the amenability of existing applications 
to the Grid Processor and examine few aspects of program behavior 
that affect performance. Large blocks with a significant number of block 
temporaries and a few input and output registers are desirable because 
they have low register file bandwidth. It is also desirable to have large 
blocks with high utilization to amortize the cost of block fetch and map. 
The encoding space needed for representing temporaries is determined by 
the number of targets of an instruction. Fewer average targets per value 
produced permits a compact encoding. We examine these characteristics 
in existing applications to determine how well they map onto the Grid 
Processor. 

In our experimental analysis, SPEC CPU2000 benchmarks were com­
piled using the Trimaran [20] tool set. Three floating point (equake, 
ammp and art) and three integer (parser, gzip and mcf) benchmarks 
were selected for analysis. Hyperblocks were generated for these bench-
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Benchmark A verage Instructions per block 
Never executed 

Dynamically due to early 
Static Size Executed branches NOPs 

gzip 144 77 59 8 
mef 48 35 8 5 

parser 29 27 1 1 
art 129 125 2 2 

equake 57 52 2 3 
ammp 124 103 8 13 

Table 7.1. Block utilization 

marks using Trimaran's IMPACT compiler with the train input set for 
profiling. All of the benchmarks were simulated using the Trimaran sim­
ulator for 500 million instructions with the ref input set. We collected 
dynamic statistics using modifications made to the simulator to track 
block size profiles and register usage. 

3.1. Instruction Behavior 

In this section, we examine some aspects of program behavior. Perfor­
mance is affected by the block sizes in programs and grid configurations. 
A profile of the dynamic block size was obtained for all the benchmarks 
to analyze the trade-off of block size with respect to block utilization. 
Wide grids have better performance at the cost of increased area with 
fewer nodes having mapped instructions. We analyze this trade-off for 
three different grid widths. 

3.1.1 Block Size. From our analysis of the SPEC CPU2000 
benchmarks, we observed that large hyperblocks can be built. Figure 7.6 
shows the dynamic block size profiles for the different benchmarks. For 
each of the benchmarks, the figure plots the percentage of execution time 
spent for each dynamic block size as a cumulative distribution function. 
Dynamic block size is the number of instructions in a block that are 
actually executed, excluding predicated instructions that are converted 
to NOPs. 

Nearly 70% of the execution time is spent in blocks of size greater 
than 26 for the integer benchmarks and blocks of size greater than 65 
for the floating point benchmarks. Across the benchmarks, the average 
number of dynamic instructions in a block ranges from 27 to 125. 



www.manaraa.com

128 

! 

I 
'5 

I 

INTERACTION BETWEEN COMPILERS ... 

gzip 

300 400 500 600 700 600 900 
block size 

mcf 

l00r-----,------r------r---~~====~r---_, 

80 

20 

oL-----~----~------~----~----~----~ 
a ~ ~ ~ ~ 1~ 1~ 

block size 

l00~----~====~~--r-----~----~--~ 

80 

20 

oj 
100 200 300 

blockslze 
400 500 600 

Figure 7.6. CDF of block size profiles. Integer benchmarks. The X-axis represents 
the number of dynamically executed instructions in a block. The Y-axis represents 
the percentage execution time spent by blocks of corresponding sizes expressed as a 
cumulative distribution function. For a block, we approximate the execution time as 
its dynamic instruction count. 
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High utilization percentages are desirable because blocks are fetched 
and mapped as a single unit. Blocks with poor utilization have a large 
number of instructions that are fetched and mapped without being exe­
cuted. In a hyperblock, instructions may not be executed, either because 
of early exits from the block or because of predicated instructions being 
converted to NOPs. Table 7.1 shows the average number of instructions 
in each block that belong to the categories described above. For four 
of the six benchmarks, the average utilization is nearly 90% with av­
erage static block sizes ranging from 29 to 129. The benchmark gzip 
shows worse utilization than the other benchmarks, as nearly 40% of 
the instructions fetched are never executed. However, these preliminary 
results show a potential for building large blocks with good utilization. 

3.1.2 Grid Utilization. The grid dimensions and connectiv­
ity determine its performance and utilization. We define grid utilization 
as the fraction of nodes in the grid that have instructions scheduled on 
them. This is affected by the richness of the interconnect: fewer con­
nections will result in a sparser schedule, in turn resulting in a lower 
utilization. We conservatively chose a connectivity that is relatively re­
strictive, guaranteeing technological scalability. Future studies will ex­
plore the connectivity design space. For a preliminary analysis, we used 
a simulator that schedules the DFG of a block on a grid of finite width 
and infinite depth, using a greedy critical path scheduling strategy. This 
strategy schedules one instruction per node, with the longest path in the 
DFG on the shortest possible physical path in the grid. Sufficient en­
coding space was assumed to specify up to 3 targets per instruction, at 
any grid position. We selected the most frequently executed blocks in 
two benchmarks and examined the grid utilization for three grid config­
urations. These blocks in ammp and parser account for 44% and 15% of 
the dynamic instructions executed. Their static sizes were 218 and 43 
instructions, respectively. 

The blocks were scheduled on three grids with the same connectivity 
of 3, but different widths: 4, 8, and 16. Increasing the width of the grid 
increases the number of independent instructions that can be scheduled 
in a single row. A wider row thus reduces the height of the schedule, but 
wastes more nodes. For each schedule, we computed the grid utilization 
and the minimum grid height required. 

Table 7.2 shows the grid utilization for the three cases. The table 
shows that at a width of 4, both the blocks exhibit a high utilization 
of 99% and 83%, requiring a grid height of 55 and 13 respectively. An 
increase in the grid width to 8 decreases the height by 8 in ammp and 4 
in parser, improving performance but with poorer node utilization. As 
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Width Min. height Nodes Utilization 
ammp - 218 insts 

4 55 220 99% 
8 43 344 63% 
16 39 624 35% 

parser - 43 insts 
4 13 52 83% 
8 9 72 72% 
16 7 112 46% 

Table 7.2. Grid utilization for different grid widths, for the most frequently executed 
blocks in ammp and parser. 

the width is further increased to 16, the drop in the height is less, but 
the utilization drops dramatically. The best balance of the grid height 
and node utilization is at 8. We note that mapping multiple blocks from 
same or different threads may increase the utilization at a minimal cost. 

3.2. Register Behavior 

Block inputs and block outputs are data read from and written to 
the register file. The number of such inputs and outputs determine the 
bandwidth and number of ports required at the register file. Block tem­
poraries are data created and used within a block. With a large number 
of temporaries, a significant amount of communication through the reg­
ister file can be eliminated. We report the results of our simulations 
to estimate the number of input registers, output registers and block 
temporaries used during program execution. 

3.2.1 Input, Output and Temporary Data. In a "well­
behaved" block, the number of register inputs and outputs is small and 
the number of temporaries large. Table 7.3 shows the number of input, 
output and temporaries used on the six selected benchmarks. The per­
centage of executed blocks versus the number of registers for the three 
different types is shown. For example, in the benchmark ammp, fewer 
than 5 registers are written out by 94.6% of the blocks executed, and an 
additional 4.2% of the blocks output between 5 and 9 registers. 

The integer and FP benchmarks show slightly different behavior. 
More than 75% of the blocks in the integer benchmarks read or write 
fewer than 10 registers. For the FP benchmarks, more than 75% of the 
blocks read or write less than 20 registers. The larger number is due 
to the larger block sizes for the FP benchmarks, for which the average 
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Input registers 
Number % of blocks 
of regs ammp equake art gzip parser mcf 

0-4 88.6 32.1 1.0 48.2 82.9 93.5 
5-9 5.2 32.9 0.3 34.8 15.2 2.9 

10-14 4.4 19.5 19.8 11.6 1.0 1.3 
15-19 0.5 1.5 56.8 5.0 0.4 2.2 
>= 20 0.4 13.5 22.0 0.0 0.3 0.0 

Temporary regIsters 
0-9 39.8 47.4 20.6 37.6 85.8 32.9 

10-19 14.9 16.6 38.1 19.1 3.5 3.1 
20-29 5.1 10.3 18.8 18.4 10.0 59.6 
30-39 13.0 1.7 0.0 0.4 0.2 2.9 
40-49 1.3 4.5 0.8 14.3 0.0 0.0 
50-59 0.8 0.3 0.0 0.0 0.0 0.0 
60-69 2.3 5.4 1.6 0.5 0.0 7.1 
70-79 0.0 0.0 3.6 2.2 0.0 0.0 
80-89 0.0 0.0 0.6 0.5 0.0 0.0 
90-99 22.3 1.0 0.5 0.1 0.0 0.0 

>= 100 0.0 11.0 0.0 0.3 0.0 7.1 
Output regIsters 

0-4 94.6 63.4 20.1 62.9 97.6 97.6 
5-9 4.2 6.4 0.8 15.0 2.0 1.9 

10-14 0.2 21.8 37.8 18.5 0.2 0.4 
15-19 0.9 6.8 25.6 3.3 0.0 0.1 
>= 20 0.0 1.2 15.6 0.0 0.0 0.0 

Table 7.3. Input, Output and Temporary registers used by the blocks. 

block size is almost twice that of the integer benchmarks. Except for 
parser, all of the benchmarks have at least 10 temporaries in over 50% 
of the blocks, showing that a significant reduction in register bandwidth 
can be achieved by the internal renaming provided in this architecture. 

3.2.2 Register fanout. Limited instruction encoding space 
constrains the number of consumers that can be specified. Fanout refers 
to the number of targets for which an instruction can produce data. 
Large-fanout instructions require extra split instructions to reach all con­
sumers. Figure 7.7 shows the average fanout for each produced value in 
the various benchmarks. For all 6 benchmarks, the fanout is 1 for more 
than 60% of instructions and less than or equal to 2 for more than 80% 
of the instructions. This shows that, if we support at least two targets, 
only one-fifth of the producers require split instructions. 
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Grid Height 
Technology Clock Speed Grid Dimensions Row Delay Delay 

(nm) (GHz) in 400 mm2 ( cycles) ( cycles) 
100 3.5 lOx10 0.53 3.57 
70 6.0 20x20 0.71 5.83 
50 10.0 27x27 1.02 11.02 
35 13.5 40x40 1.16 21.30 

Table 7.4. Area and Delay estimates at various technologies 

These results are consistent with those obtained by Franklin and 
Sohi [8]. Their work studied the live ness of registers in terms of number 
of instructions and the fanout for registers, but did not analyze register 
behavior at the block level. 

3.3. Technology Evaluation 

To evaluate the Grid Processor for technology scaling, we used the 
technology-independent area and delay estimates described by Gupta [9] 
and Agarwal [2]. We used minimum features, which include a 64-bit 
integer ALU and multiplier, 8-entry instruction and operand buffers, 
and an 8-bit ALU and buffers for the router at each node. We assumed 
that 50% of the chip area is reserved for the grid interconnect. We 
computed both the area occupied by a node at various technologies and 
the number of nodes that can be accommodated on a 400 mm2 chip. 

Using node dimensions derived from the area estimates, we computed 
the wire delay between nodes in adjacent rows and the delay to traverse 
the entire height of the grid at SIA projected clock rates [17]. The 
results are summarized in Table 7.4. At all technologies, the wire delay 
between adjacent rows is close to a single cycle. This result shows that 
a grid with a fast local interconnect can be built at all technologies. As 
feature size shrinks, both the node density and delay across the height of 
the grid increases super-linearly. At technologies below 50 nm, the grid 
sizes are much larger than what is required to map a typical block and 
the express channels have prohibitively long delays. In such cases, the 
computation substrate could be further partitioned into multiple grids. 

4. Related Work 

There have been a number of related approaches preceding the Grid 
Processor. Dennis and Misunas proposed a static dataflow architec­
ture with programs expressed in a Fortran-like dataflow language [6]. 
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Arvind proposed the Tagged-Token Dataflow architecture with purely 
data-driven instruction scheduling for programs expressed in a dataflow 
language [3]. Culler proposed a hybrid dataflow execution model where 
programs are partitioned into code blocks made up of instruction se­
quences called threads with dataflow execution between threads [5]. Our 
approach uses a conventional programming interface with dataflow exe­
cution for a limited window of instructions. 

We take a hybrid approach between VLIW [7] and conventional su­
perscalar architectures by statically scheduling the instructions using the 
compiler and dynamically issuing them. There have been other efforts to 
enhance dynamic execution in VLIW machines. Rau proposed a split­
issue mechanism to separate register read and execute from write back 
and a delay buffer to support dynamic scheduling for VLIW proces­
sors [14]. 

Others have looked at various naming mechanisms for values to reduce 
the register pressure and register file size. Smelyanskiy proposed Reg­
ister Queues for allocating live values in software pipelined loops [18]. 
Llosa proposed register sacks, which are low bandwidth port-limited 
register files for allocating live values in pipelined loops [11]. Corporaal 
proposed an explicitly specified communication mechanism in Transport 
Triggered Architectures for general purpose computing [4]. 

Many researchers are exploring distributed or partitioned uniproces­
sor designs. Waingold proposed a distributed execution model with 
extensive compiler support in the RAW architecture [21]. The RAW 
architecture assumes a coarser-grain execution than does the Grid Pro­
cessor, exploiting parallelism across multiple compiler-generated instruc­
tion streams. Ranganathan and Franklin described an empirical study 
of decentralized ILP execution models [13]. Sohi proposed Multiscalar 
processors where a single program is broken up into a collections of 
tasks. The tasks are distributed to a number of parallel processing units 
which reside within a processor complex [19]. Each of these units fetches 
and executes instructions belonging to its assigned task. Rotenberg pro­
posed trace processors where several processing elements work on differ­
ent traces of the program, passing data values using a common register 
bus [15]. Unlike the trace processor, the Grid Processor executes a trace 
in a fine-grain dataflow fashion and overlaps multiple traces on the same 
computation substrate. 

Finally, Patt proposed a Block-Structured Instruction Set Architec­
ture for increasing the fetch rate for wide issue machines where the 
atomic unit of execution is a block and not an instruction [10]. 
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5. Conclusion 

In this paper, we have proposed a technology-driven architecture that 
combines the advantages of compiler-scheduled instruction level paral­
lelism with data-driven execution on a fast clocked grid of execution 
units. Instruction blocks are mapped onto the grid as single units of 
computation, amortizing the fetch and decode over a large number of 
instructions. Access to global storage elements such as register files is 
reduced by maintaining temporaries as transient values within the grid. 
Overheads can further be reduced by overlapping the execution of one 
instruction block with the fetch and mapping of the next. 

Our initial evaluation indicates that existing programs are ripe to be 
mapped to this substrate. Typical block sizes range from 27 to 125 dy­
namically executed instructions, which we anticipate to be sufficiently 
large to amortize scheduling overheads. The number of input and out­
put values required for a large fraction of the blocks is less than 10 in 
five of the six benchmarks, indicating that the amount of register file 
communication between blocks is small. The average number of tem­
porary registers per block is larger, ranging from 10 to 30, depending 
on the benchmark. This range indicates that a substantial amount of 
communication to the centralized register file can be eliminated through 
the producer/consumer communication within the grid. Finally, the av­
erage number of consumers of a produced value is only 1.9, which shows 
that the network within the grid does not require large bandwidth for 
intra-block communication. 

In addition to these direct performance advantages, the proposed Grid 
Processor provides several other benefits. It offers substantial power sav­
ings because much of the scheduling is performed at compile time and 
each execution unit is idle until all operands arrive. Furthermore, since 
particular blocks of the program, such as loops, can be mapped once 
and reused many times, the time and power required for block map­
ping can be reduced substantially. In conventional architectures, the 
instructions must be fetched repeatedly for each iteration of the loop. 
This mapping reuse may permit the Grid Processor to act as a high 
performance substrate for DSP codes as well. Finally, the data driven 
computation model on the Grid Processor is amenable to both polypath 
execution and selective re-execution upon mis-speculation. Condition­
ally executed instructions within the block can be started speculatively. 
If the speculation was incorrect, the block may be re-executed by loading 
correct values into the appropriate graph nodes and letting the values 
propagate to the data dependent downstream instructions. Thus no in-
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structions need be refetched, and independent instructions do not need 
to be re-executed upon a mis-speculation rollback. 

While this paper outlines the basic Grid Processor architecture and its 
potential for performance improvement, substantial challenges lie ahead 
in the complete design. The dataflow-style execution is amenable to both 
computation and memory parallelism. However, dynamic dependences 
between loads and stores must be detected to ensure proper ordering 
in the memory system. Dynamic dataflow execution with compiler­
controlled static scheduling removes the need for synchronization in the 
execution substrate that conventional architectures enforce. The chal­
lenge lies in detecting when all of the instructions in the block have 
terminated and architecturally visible storage can be committed. Fi­
nally, the traditional precise exception model in which an exception can 
occur at any point in the instruction stream is particularly challenging 
for the Grid Processor. Changing the granularity of rollback from an 
instruction to a block level may enable more efficient exception imple­
mentation. 
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